:: جلد 24، شماره 1 - ( 2-1401 ) ::
جلد 24 شماره 1 صفحات 11-1 برگشت به فهرست نسخه ها
پیش‌ بینی زودهنگام دیابت بارداری با استفاده از الگوریتم‌های درخت تصمیم و شبکه عصبی مصنوعی
جواد زارعی ، مهدیه ایزدی ، امیرعباس عزیزی ، صدیقه نوح جاه
مرکز تحقیقات دیابت، پژوهشکده سلامت، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران، ، s_nouhjah@yahoo.com
چکیده:   (1108 مشاهده)
مقدمه: دیابت بارداری با عوارض متعدد کوتاه‌مدت و درازمدت در مادر و کودک همراه است. شناسایی عوامل خطرزای آن می‌تواند به تشخیص به‌ موقع و پیشگیری از عوارض مرتبط با آن کمک کند. هدف از این مطالعه طراحی و مقایسه مدل‌های پیش‌بینی ابتلا به دیابت بارداری با استفاده از الگوریتم‌های هوش مصنوعی بود. مواد و روش‌ها: برای پیش‌بینی دیابت بارداری از الگوریتم‌های درخت تصمیم، و شبکه عصبی مصنوعی استفاده گردید. جامعه پژوهش 1270 زن باردار تحت پوشش مراکز بهداشتی درمانی شهر اهواز بودند که 816 مورد آن‌ها سالم و 454 مورد مبتلا به دیابت بارداری بودند. جهت ارزیابی کارآیی مدل‌ها؛ حساسیت، ویژگی، دقت و صحت محاسبه گردید. در نهایت از الگوریتم طبقه‌بندی AdaBoost برای تقویت مدل پیشنهادی استفاده گردید. یافته‌ها: پس از انجام تحلیل مولفه اساسی، نه متغیر برای مدل‌سازی اولیه انتخاب شدند. که در مدل شبکه عصبی مصنوعی، سطح زیر منحنی راک و حساسیت به ترتیب 83/2 درصد و 85/1 درصد بود، و برای مدل درخت تصمیم نیز سطح زیر منحنی راک و حساسیت به ترتیب 0/826 و 84 درصد به­ دست آمد. پس از حذف متغیرها با وزن کمتر و تقویت مدل پیشنهادی، سطح زیر منحنی راک و حساسیت افزایش پیدا کرد (0/861 و 92/1 درصد). پنج متغیر شامل: قند خون ناشتا در اولین معاینه بارداری، سابقه دیابت بارداری در بارداری‌های قبلی، نمایه توده بدنی، سن مادر و سابقه خانوادگی دیابت، بالاترین دقت را در پیشبینی ابتلا به دیابت بارداری داشتند. نتیجه‌گیری: نتایج این مطالعه نشان داد که الگوریتم‌های هوش مصنوعی از دقت و کارآیی قابل ‌توجهی برخوردارند و می‌توانند با پیش‌بینی زودرس دیابت بارداری در پیشگیری از پیامدهای منفی آن مؤثر باشند.
 
واژه‌های کلیدی: دیابت بارداری، یادگیری ماشین، هوش مصنوعی، درخت تصمیم، شبکه عصبی مصنوعی
متن کامل [PDF 1203 kb]   (755 دریافت)    
نوع مطالعه: پژوهشی | موضوع مقاله: زنان
دریافت: 1401/6/21 | پذیرش: 1401/8/30 | انتشار: 1401/2/12


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
جلد 24، شماره 1 - ( 2-1401 ) برگشت به فهرست نسخه ها