آثار جداگانه و برهم کنش فرومونهای جنسی موش صحرایی ماده با رفاهای جنسی و والدینی، بر سطح پلاسمایی هورمون تستوسترون در موش صحرایی نیز ویژا و بی‌ویژا

چکیده

فرومونه‌ها نقش عمدی در رفتارهای جنسی و اجتماعی بی‌پاره از جانوران داشته. قادرند بر فیزیولوژی تولید مطلب پستانداران اثر بگذارند. معنی اصلی فرومونها ادار و ترشحات پاراکریپتی می‌باشد. به لحاظ سیستم نورواندکرینی، هورمون تستوسترون یک پارامتر مثبت برای اندوراگری و مقایسه تأثیر فرومونها بر رفتارهای جنسی می‌باشد. در مطالعه تحقیق حاضر از 8 موش برای فرزندگی استفاده شد (ن=8). در میان گروه‌هایی که از این 8 موش در 13 میلی‌گرم/کیلوگرم شرایط خوشرنگی به عمل آمد و 13 گروه پراکنش و تحلیل آماری در نظر گرفته شدند. به کمک فیزیولوژی، تأثیر فرومونهای جنسی بدن دخات تحریک‌های حسی از جمله شبی، شیوع و لاسه به هورمون تستوسترون افزایش گرفت. تستوسترون آنها توسط به زمانی که فقط فرومون ماده‌ها را دریافت می‌کنند، پیش از افزایش می‌یابد (گروه سوم-10/0). می‌تواند عمل جفت‌گیری میزان هورمون تستوسترون را نسبت به دیگر نیز افزایش بخشد (ضمن‌الناظری). کاهش پایه (گروه چهارم-0/65±0/69 ng/mL (p<0/5)) در نتیجه می‌باشد. هزینه این تستوسترون با تأثیر کاهش قابل ملاحظه‌ای در پلاستیکی هورمون تستوسترون می‌باشد. پیچیدن در کاهش پایه، پیچیدن در کاهش می‌باشد (گروه چهارم–0/65±0/69 ng/mL (p<0/5)). در نتیجه گروه دوم افزایش میزان تحریک‌های حسی از جمله شبی، شیوع و لاسه به هورمون تستوسترون افزایش گرفت (گروه سوم). ماده و رفتارهای مختلف جنسی و والدینه، به طور مستقیم بر سطح پلاسمایی هورمون تستوسترون و در نتیجه نفع‌الیت‌های تولیدشی موش‌های نر تأثیر می‌گذارد.

واژگان کلیدی: فرومون‌های جنسی، تستوسترون، رفتارهای جنسی، رفتارهای پدیده، اندام تیغه‌ای بینی

مقدمه

فرومونها عمل‌های آدرار و ترشحات بی‌پاره از غدد برونزی می‌باشند. فرومونها از نظر ترکیب شیمیایی، طیف گسترده‌ای موجود زندگی تولیدشده و در هوا پخش می‌شوند. منبع اصلی
از موارد آلی در بر می‌گیرد که شامل هدایت‌های پلی‌سیستمی کوکیک، پروتئینی، آسیب‌های چرب و استروئیدها می‌باشد. فرآوری‌هایی را که به همراه با رفتارهای جنسی بدن تاثیر می‌گذارند. فرآوری‌های آغازگرگیرنده‌گری بی‌اعتمادی که از طرف سیستم غدد درون زمین می‌گیرد. در حالی که برخی از فرآوری‌ها به طور مستقیم عمل می‌کنند که به آنها فرآوری‌های آزاد نامیده می‌شوند. اکثر فرآوری‌های جنسی جزو فرآوری‌های آغازگرگیرنده‌گر است. فرآوری‌های جنسی قادرون بر مراحل تولید مثلی در پستانداران اثر بگذارند. آنها به جذابیت جنسی و رفتارهای مقربرتی کمک می‌کنند. می‌تواند به صورت فیزیکی بر میزان فرآوری‌های جنسی، رفتارهای جنسی و والدین تأثیر بگذارد. در این مطالعه تأثیر فرآوری‌های جنسی موسی تحریک‌پذیر ماده به طور جدایگان و به صورت به‌هم‌کنشی با رفتارهای قبل از جفت‌گیری، بعد از جفت‌گیری، دوره حاملگی (در روزهای میلاد، هچاردوم و بیست و یکم) دوره رفتارهای پدران (روزهای پنجم، دهم و پانزدهم) و دوره رفتار پدر غربی (روزهای پنجم، دهم و پانزدهم) بر میزان پاسخ‌گویی تسترستون بررسی شد.

مواد و روش‌ها

فقر بیشتری در این مطالعه تأثیر مثبت می‌گذارد. ممکن است هر سه تودهٔ ممکنی را به طور اجتماعی زندگی می‌کنند که باعث می‌شود مشابه باشد. آین متغیر اصلی و ۴ متغیر مابین ماده‌ها و توسط فرآوری‌ها با عملکردی گری می‌تواند. این موضوع در جنگ‌های به خوبی مورد مطالعه قرار گرفته است. این فرآوری‌ها قادرند بر شرکت جنسی و هیژمنی در شیرخواری تأثیر بگذارند.؟

اثار تغییراتی بینی (VNO) آزاد، از حاوی یک‌تا دو فرآوری در غلب پستانداران به عنوان آیه این ادام در قاعدایی حرکتی بی‌پایان قرار گرفته است و نهایتاً با نواحی خاصی از آمیگال و هیپوتالاموس در ارتباط است.؟

هرونه‌ها باعث هماهنگی و تظم در نحوه بیان پاسخهای مقضیه به پیام‌های فرآوری‌های می‌شوند؟

از طرف نسبت GnRH، را برجسته کردند. به عبارت بحثی فرآوری‌های آغازگرگیرنده، تمام محرّک (HPGA) در بنجان سنی حس داشت. در نتیجه، رفتارهای متعاقب این تغییرات را نیز تحت تاثیر قرار می‌دهند.؟

در برخی از پستانداران، رفتارهای والدین از طریق فرآوری‌ها کامل می‌گردد. این رفتارها در پستانداران ماده‌ای که دارای تجربه و بالینی به‌یادهاستند کاملاً می‌باشد. در
جداگانه برای تجزیه و تحلیل آماری در نظر گرفته شدند که در ادامه این گروه‌ها شرک داده خواهند شد. موش‌ها در اتاق حیواناتی که تحت شرایطی استاندارد (12 ساعت تاریکی و 12 ساعت روزانه هنگام دامی جلوی داشتند) آماده شده بودند. نکته‌ها و خونگیری از موش‌ها از تیرمها آغاز شد و 10 تا شهروی‌های ادامه یافت.

مورس، هاکمی که نه در معرض فرمون قرار داشتند و نه در معرض موش ماده (گروه کنترل)؛ 2) موش‌هایی که فقط در معرض فرمون موش ماده قرار داشتند (به مدت دو شبانه روز)؛ 3) موش‌هایی که هم در معرض فرمون قرار داشتند و هم به مدت یک شب شانه روز در معرض موش ماده به شرطی که عمل جفتگیری صورت گرفت (جدول گیری یا عمل جفتگیری از طریق تکثیر باکتری کنترل شده)؛ 4) موش‌هایی که هم در معرض فرمون قرار گرفتند، و هم با موش ماده جفت‌گیری کرده (خونگیری، اولین روز پس از عمل جفتگیری صورت گرفت) (5) موش‌هایی که در مدت حاملگی، به مدت یک هفته در کار موش ماده بودند؛ 6) موش‌هایی که در مدت حاملگی، به مدت دو هفته در کار موش ماده بودند؛ 7) موش‌هایی که در مدت حاملگی، به مدت سه هفته در کار موش ماده بوده و بعد از زایمان به مدت دو هفته رفتار را تجربه کردهند؛ 8) موش‌هایی که در مدت حاملگی، در کار موش ماده بوده و بعد از زایمان به مدت یک هفته در کار فرزندان غربه (فرسندان یک قسم دیگر) قرار گرفته و رفتار یک پدر غربه را تجربه کردهند؛ 9) موش‌هایی که به مدت دو هفته در کار فرزندان غربه (فرسندان یک قسم دیگر) قرار گرفته و رفتار یک پدر غربه را تجربه کردهند؛ 10) موش‌هایی که در مدت حاملگی، در کار موش ماده بوده و بعد از زایمان به مدت یک هفته در کار فرزندان غربه (فرسندان یک قسم دیگر) قرار گرفته و رفتار یک پدر غربه را تجربه کردهند.

خونگیری: برای اندازه‌گیری میزان تستوسترون خون موش‌های نر، عمل خونگیری از انتهای دم موش‌ها انجام شد. در هر نتیجه به میزان حدود یک الی دو میلی لیتر از دم موش خون‌گیری شد.

آزمون هورمونی: به منظور اندازه‌گیری میزان تستوسترون خون موش‌های نر، عمل خونگیری از انتهای دم موش‌ها انجام شد. در هر نتیجه به میزان حدود یک الی دو میلی لیتر از دم موش خون‌گیری شد.

تصویر ۲- یک نمای کلی از داخل فقس مخصوص موش‌های نر، میزان تستوسترون خون موش‌های نر، عمل خونگیری از انتهای دم موش‌ها انجام شد. در هر نتیجه به میزان حدود یک الی دو میلی لیتر از دم موش خون‌گیری شد.

آزمون هورمونی: به منظور اندازه‌گیری میزان تستوسترون خون موش‌های نر، عمل خونگیری از انتهای دم موش‌ها انجام شد. در هر نتیجه به میزان حدود یک الی دو میلی لیتر از دم موش خون‌گیری شد.

کیهانی: تهیه شده از یک شرکت کاوشی، Free Testosterone توسط طبقات مختلف دندان‌ندازی و متولی بهبودیان ELISA این انتخاب‌گیری شدند و نتایج به دست آمده مرتب تجزیه و تحلیل آماری قرار گرفتند.

در مطالعه حاضر از 8 جفت موش نر برای خونگیری متوالی در گروه‌های آزمونی به هم که بر اساس جدول زمانی مشخص از آنها خونگیری به ایام استفاده شد، از هر موش در 12 نویت خونگیری به ایام آمادا و 12 گروه
در چند کروه با یک کروه از روش‌های آماری آزمون تی جفتی پارامتریک” استفاده شد. ضمناً برای مقایسه دو یا چند کروه با دو یا چند کروه دیگر از روش آماری استفاده شد. از آنجا که خون گیری‌ها از 8 نفر نر صورت گرفته بود، به کارگیری روش آنالیز واریانس یک طرفه (ANOVA) صحیح بود. به همین علت از یک روش آماری مشابه با استفاده ANOVA شد که در داده‌ها بر اساس تناوب زمانی با هم مقایسه شدند.

یافت‌ها

نتایج به دست آمده از تجزیه و تحلیل آماری داده‌های حاصل از این مطالعه را می‌توان به صورت خلاصه در جدول و نمودارهای زیر مشاهده کرد:

|       | مقداری سطح پلاسمایی هورمون تستوسترون با گروه‌های شاهد: ضرایب کنتنی فرمان‌های نهایی دو دوره حضور موش ماده، قبل از عمل جفت‌گیری و بعد از عمل جفت‌گیری، دو دوره و کنتنی فرمان‌های نهایی در دو روش آزمون تی جفتی پارامتریک و غیرپارامتریک معنی‌دار بود.
|       | (نمودار 1) |
|       | نمودار (2) |
گروه‌ها

نمودار ۱ - مقایسه سطح پلاسمایی هورمون تستوسترون بین گروه‌های کنترل و دریافت کننده هورمون ماه به‌طور حضور (Mean ± SE) می‌باشد. دیپارازوکنده‌ها در گروه کنترل و دریافت کننده فرمون در ۵۰/۰ و برای گروه‌های قبل و بعد از جفتکردن در می‌باشد. اختلاف بین گروه شاهد و گروه دریافت کننده هورمون در ۵۰/۰ و برای گروه‌های قبل و بعد از جفتکردن در می‌باشد.

گروه‌ها

نمودار ۲ - مقایسه سطح پلاسمایی هورمون تستوسترون بین گروه‌ها در دیپارازوکنده‌های دریافت کننده و دریافتکننده هورمون ماه به‌طور حضور (Mean ± SE) می‌باشد. مقایسه گروه‌ها از طریق روش مشاهده‌های صورت کرایه‌ای است. نتایج نشان می‌دهند که گروه‌های اول و دوم در دیپارازوکنده‌های آبیستینی با هم و در دیپارازوکنده دیپارازوکنده با هم، که در سه گروه دیپارازوکنده رفتار پدیده تفاوت معنایی ندارد. همچنین نتایج نشان می‌دهند که هر سه گروه دیپارازوکنده رفتار پدیده تفاوت معنی‌داری دارند (p< ۰/۰۵).
نمودار ۲- مقایسه سطح پلاسمایی هورمون تستوسترون بین کروه‌های دوم و سوم دوره‌های رفتار در ۱۴۹۶ به‌طور گردید. نتایج نشان می‌دهند که کروه‌های دوم و سوم دوره‌های رفتار پدر غربیه ایستفاده کرده‌اند و سوم دوره‌ای آبستینانه با هیچ‌کدام از سه کروه دوره‌ای رفتار پدر غربیه تفاوت معنی‌داری ندارند. در همچنین نتایج نشان می‌دهند که فقط کروه دوره‌ای رفتار پدر غربیه است که تنها با کروه‌های اول و سوم دوره‌ای آبستینانه تفاوت معنی‌داری دارد و بقیه کروه‌های دوره‌ای رفتار پدر غربیه تفاوت معنی‌داری با همیج کدام کروه‌های دوره‌ای آبستینانه دارند (p<۰/۰۵).
بفت

نتایج به دست آمده در مطالعه حاضر، نشان دهنده این مطلب که سطح هورمون تستوسترون در گروه قبل از جفتگی نسبت به گروهی که متعادل با موس ماده نداشته و یا به آنها را دریافت کرده‌اند، افزایش می‌یابد.

ولی نسبت به گروهی که عمل جفتگی را انجام داده‌اند، از سطح پلاسما پایین‌تری برخوردارند. در نتیجه تجربه‌های جنسی باعث می‌شود که سطح پلاسما پلئاسما هورمون تستوسترون افزایش یابد. این موضوع همواره با تناقضی است که وندروفرگر و همکاران در سال 1998 نشان دادند که رفتار جنسی موش هاستر نر نیاز به وجود مقادیر کافی از هورمون تستوسترون در بزرگ مغز آن جانور دارد. نرها اخیراً به شدت بالا در نمایان قرار گرفته‌اند، این هورمون هم وارد شده و همکاران در سال 1994 انجام شد که مشخص شد که باعث پامنیا و پیش به سطح پلاسما هورمون تستوسترون نگاشته است؛ ولی در گروهی که بعدی، این هورمون هم وارد شده و همکاران در سال 1994 انجام شد که مشخص شد که باعث پامنیا و پیش به سطح پلاسما هورمون تستوسترون نگاشته است.

بر اساس مطالعه‌هایی که توسط وندروفرگر و همکاران در سال 1994 انجام شد، مشخص شد که باعث پامنیا و پیش به سطح پلاسما هورمون تستوسترون نگاشته است.

نتایج به دست آمده در مطالعه‌های ابراز و همکاران در سال 2002 نشان داد که ممکن است فرآیندهای بالا ایجاد قطب‌هایی در سطح هورمون زبان رداری‌های موش نباشد، ولی در خور که باعث آزادسازی آن‌ها برای اعمال رفتارهای مادرانه به هنگام تولد، فردنشان شوند. وندروفرگر در مطالعه‌ای نیز توضیح داد که باید در دوره زبان‌های دانستنی، سطح پلاسما هورمون تستوسترون در هفته‌های نوزاد و روز بارداری افزایش میکند، در حالی که در هنگام سوم به میزان قابل توجهی کاهش می‌یابد. ولی به‌ویژه سطح پلاسما هورمون تستوسترون در دوره بارداری نسبت به نرها کاهش گرفته و در دو بهترین نتیجه‌ها در هنگام حامله رشد می‌یابد.

بفت

در نتیجه هورمون تستوسترون و رفتارهای جنسی موش هاستر و دانستنی رفتارهای باعث افزایش می‌شود.

ویژه‌تبار که در مطالعه‌های حاضر مشاهده شد، سطح هورمون تستوسترون تحت تأثیر رفتارهای جنسی والدین قرار می‌گیرد؛ ولی در طول رفتارهای جفتگیری و حتی دریافت هورمون موش ماده - بدون دریافت هیچ‌گونه تحریک جنسی، نگاره‌ها، نشانه‌ها و لمسی - باعث می‌شود که سطح پلاسما پلئاسما هورمون تستوسترون به طور قابل ملاحظه‌ای افزایش یابد.
تفاوتی کامض قابل توجهی می‌یابد که این کامض باعث توجه بیشتر پدر به فرزندان می‌گردد. مشاهده شد که با قرار دادن موش پدر در کنار فرزندان غربی سطح پلاسمایی هورمون تستوسترون مجدداً افزایش می‌یابد که این مسئله خود می‌بینیم تأثیر منقابل فرومون‌ها. آزاد شده از فرزندان بر سیستم اندرکرینی پدر می‌باشد.

سیاست‌گرایی

از آقایان دینی قلم دعوت می‌گردد و مسئول منجنب بپذیری که خاطر همکاری در اجرای این طرح تحقیقاتی تحقیر و قدردانی به عمل می‌آید.

References

Abstract

Introduction: Pheromones play a major role in the sexual and social behavior of animals. The main sources of pheromones are urine and paracrine secretions. Pheromones can affect the mammals reproductive physiology. The vomeronasal organ (VNO) is located in the base of nasal cavity and VNO has some effects on amygdal; stimulating the amygdal hence could affect the mammal’s sexual behavior. Through the neuroendocrine system, testosterone is a safe parameter to measure and compare the effects on the sexual behavior. With regard to the neuroendocrine system, testosterone is a safe parameter for measuring the effects of pheromones on sexual behaviors. In this research, we have investigated the effects of pheromone interaction on sexual behaviors such as intercourse, mating and being near a pregnant female, also paternal behavior after children’s birth, have been investigated. Materials and Methods: The effects of sexual pheromones were determined with a special cage without any sensory stimulation interference, such as visual, auditory, tactile senses (3.58±0.38 ng/mL). Results: Proximity between a female and a male rat increased plasma levels of testosterone rapidly (10.59±2.25 ng/mL, P<0.01). Mating caused a decrease in testosterone levels compared to premate groups (4.32±0.95 ng/mL, P<0.05). During pregnancy, the testosterone levels increased up to the second week (6.11±1.58 ng/mL, P<0.017) then decreased rapidly (1.65±0.37 ng/mL, P<0.017). After birth of children, the father rat testosterone levels decreased gradually (0.36±0.14 ng/mL, P<0.017). But the presence of the father rat’s near the strange child rat, the plasma levels of testosterone to increase significantly compared to the increase in mating groups (8.46±1.26 ng/mL, P<0.017). Conclusion: These findings suggest that female sexual pheromones and different fatherhood and sexual behaviors, directly affect plasma levels of testosterone and can subsequently affect mating rats’ reproductive activities.

Keywords: Sexual pheromone, Testosterone, Sexual behaviour, Paternal behaviour, Vomeronasal organ