مقاله: تأثیر ویتامین E بر تغییرات ایجاد شده در آثر دیابت در روده کوچک

علي‌رضا شیری‌پور،(1) دکتر بهروز ایلخانی‌زاده(2) رامین سعید‌شاپور(3) دکتر مهدی استکندری(4) دکتر فیروز قادی‌پاک(5) دکتر مجنی کریمی‌پور(6) دکتر علی(7) آناتیا پورشهازی(8)

چکیده

در پژوهشی تأسیسی، دیابت تکثیری می‌کنند. این مطالعه برای نمایش کاهش عوارض دیابتی صورت گرفت. در این مطالعه تأثیر ویتامین E بر تغییرات مورفولوژیک و هیستوپاتولوژیک در روده کوچک رنگ‌نمایی از دیابت بررسی شد. ماده و روش: 22 سر موش بر اساس وزن 27-35 گرم و سن 8 ماهه انتخاب شدند. 14 سر از موش‌ها با تزریق زیرصفاقی استپتپنوسین (STZ) با دوز 60 mg/kg در دیابتی شدند. ره‌ها در سه گروه 8 تایی شامل گروه غیردیابتی، گروه دیابتی درمان نشده و گروه استپتپنوسین انتخاب گردید. در گروه دیابتی، ویتامین E به مقدار 50 برابر می‌کرد. به‌اضاوس 7 گروه دیابتی درمان نشده و گروه استپتپنوسین به مقدار 50 برابر می‌کرد. این مطالعه نشان داد که دیابت موجب افزایش در مقدار توزین، عضلات و تغییرات مورفولوژیک در روده کوچک نشده است. در گروه استپتپنوسین، عضلات و تغییرات مورفولوژیک در روده کوچک باعث افزایش در مقدار توزین، عضلات و تغییرات مورفولوژیک در روده کوچک می‌گردد.

واژگان کلیدی: دیابت، روده کوچک، ویتامین E، موش صحرایی

مقدمه

اختلافات لوله کوارش از علائم عمومی دیابت می‌توان است. این اختلالات با علائم مانند تهوع و استفراغ، اختلالات حرکتی روده کوچک و تغییرات مورفولوژیک در لوله کوارش بروز می‌کند. این بیماران دیابتی تجلی می‌واد
نمونه

با تغییر ترکیب مکانیزم‌های درون سلولی DNA نظیر و پروتئین‌های می‌شود.

در مقابل این مواد ترکیبیگر و اکسید کنندگان، سیاستی از آنتی اکسیدان‌ها داخل و خارج سلولی مکانیسم‌های دفاعی را پدید می‌آورد که اثرات ترکیبی اکسید کننده‌ها در خستگی می‌کند. گروهی از این مواد آنتی اکسیدان آنژیم مانند سوپرااکسیدبازی،
لیپوئیک اسید، سلنیوم و غیره نیز به حفظ رادیکال‌های آزاد تولید شده کمک می‌کنند. در حالی که استرس ROS و آنتی اکسیدان‌ها، خاصاً آنتی اکسیدان‌های ماکتیکسی می‌تواند در هر دو قسمت مورد استرس، ROS و انرژی‌سنجی را کاهش دهد. مثالی از این استرس‌ها به اکسیدان‌های آزاد می‌تواند باعث بروز از می‌گردد. در برابر اکسیدان و ترکیبی DNA ترکیب مکانیزم‌های انسان DNA نظیر و پروتئین‌های می‌شود.

۳۸ ب ر ترکیب درون سلولی روده کوکه، توپه پر شده و افزایش ضخامت لایه ضلایلی می‌شود. ۴۰ در این مطالعات ترکیبی بی‌کلسترول در نتیجه تغییرات در روده کوکه افزایش می‌یابد.

ب م و روش‌ها

تجهیزات مطالعه ۲۴ روز تزریق ویتامین C و
۱۳۸۳ مال ششم، شماره ۴، زمستان

۱۰۰۰ گرم و با سین پکسی ۸ ماهه بودند. حیوانات از بخش حیوانات دانشگاه پزشکی ارومیه و در شرایط نوری ۱۲ ساعت روشنایی و ۱۲ ساعت کاریک و در دمای
۳۸-۴۰ درجه سانتی‌گراد در خانه‌های فیزیولوژیک تولید می‌شود.
نتایج
طول روده کوچک
متوسط طول روده کوچک در رده‌های گروه شاهد غیردیابتی 0/24 سانتی‌متر بود. در رده‌های دیابتی درمان نشده و گروه سوم دیابتی شاهد با یوتامین E تقسیم شدند. رشد گروه دوم و سوم با تریک دخالت صرفه‌جویی استپتروزوسین ساخت شرکت سیگما آمریکا دیابتی STZ (40 mg/kg) شدند. به این ترتیب که 22 ساعت بعد از تریک خون‌گیری از دم انجام و سرم آنها از گلیوژای قرمز جدا شد. بدین ترتیب تست خون، حیواناتی که میزان قند آنها از 300 mg/dL بیشتر بود دیابتی در نظر گرفته شدند. حیوانات گروه دوم و سوم با توجه به مطالعه مقدماتی در شیب عروق گروه 22 گرم نمونه جوندگان دریافت می‌کردند. حیوانات گروه سوم علاوه بر غذا، در شب روز 300 میلی‌گرم ویتامین E (ساخت شرکت مکرف) هر روز با آب آشامیدنی دریافت می‌کردند. حیوانات گروه اول از طول آزمایش دسترسی آزادانه به آب و غذا داشتند. بعد از 6 هفته تمام حیوانات با تریک داخل صفحه هیدرات کرال 10% به میزان نرم میلی لیتر از هر صد گرم وزن بیشتر شدند. 24 ساعت قبل از پهلوشی تام حیوانات گرستن نگاه داشته شدند تا روشهای دیگری مواد غذایی تعلیق شود. بعد از پهلوشی و با کردن حمله اطراف روده کوچک برداشته شد. سپس روده کوچک از اسفنگت پیلور تا اسفنگت اینتله‌سکال به وسیله پیچ بریده شد. طول و وزن روده‌ها

اندازه‌گیری شد. سپس از هر قسمت روده کوچک (دولون، زروت و ایلوت) نمونه‌هایی به طول 5 سانتی‌متر برداشته شد و به مدت 24 ساعت در یخچال یک‌ درصد قرار گرفت. بعد از برداشتش بافت و نهایتاً بلوک‌های پارافین از سه قسمت از روشهای نهایی از رنگ‌آمیزی‌ها متخلف‌سیلایناتی انتزینگ

شناسایی و اندازه‌گیری شد. برای بررسی مورفولوژیکی تهیه شد.

میانگین وزن روده‌ها کوچک میانگین وزن روده کوچک در رده‌های گروه غیر دیابتی، دیابتی شاهد و دیابتی درمان نشده با یوتامین E ترتیب 0/77/0/47/0/82/0/82/0/2/0/2/0/82/0/82 و 9/2 درصد بود. وزن روده در رده‌های دیابتی درمان نشده در مقایسه با رده‌های سالم افزایش معنی‌دار داشت (0/1) (p<0/0/2) اما در رده‌های دیابتی درمان شده با یوتامین E اختلاف معنی‌دار بین وزن روده این رده و رده‌های سالم نبود (نمودار 3).

شماره 1- میانگین ± خطاهای معیار تغییرات طول روده در کروه‌های مختلف موش‌های مورد آزمایش

شماره 2- میانگین ± خطاهای معیار تغییرات وزن روده کوچک

- Pilot study
گروه دیابتی درمان نشده با ویتامین E و رشدی‌های غیردیابتی اختلاف معنی‌دار دیده نشد.

عمق کربنیت

جدول (2) عمق کربنیت را در سه گروه مردان مطالعه‌های در سه بخش رو به نشان می‌دهد. همانطور که در جدول ویده می‌توان عمیق کربنیت در دندان‌های گروه دیابتی درمان نشده در مقایسه با گروه سالم افزایش معنی‌دار نشان داد (4). در رده‌های دیابتی افزایش معنی‌دار نشان داد (2) (%). اما بین عمق کربنیت رده‌های دیابتی درمان شده با ویتامین E و رده‌های دیابتی درمان نشده اختلاف معنی‌دار نیست.

میزان رو به افزایش سنتی متر طول رورط

وزن رورط به افزایش سنتی متر طول رورط

وزن سنتی متر از روده در رده‌های سالم و دیابتی از دیدگاه افزایش معنی‌دار به ترتیب در رده‌های دیابتی درمان نشده و رده‌های دیابتی درمان نشده (%). اما بین عمیق کربنیت رده‌های دیابتی درمان نشده با ویتامین E اختلاف معنی‌دار با رشدی‌های سالم وجود نداشت (%).

نسبت طول پرز به عمق کربنیت

همان‌طور که در جدول (2) دیده می‌شود نسبت طول پرز به عمیق کربنیت در دندان‌های و رزو کربنیت مختلف با همین‌طور اختلاف معنی‌دار دارند اما در ابتلاً این نسبت در رده‌های دیابتی درمان نشده در مقایسه با رشدی‌های سالم و غیردیابتی افزایش معنی‌دار نشان داد (2) (%). در رده‌های دیابتی درمان نشده با ویتامین E تغییر معنی‌دار در مقایسه با رشدی‌های غیردیابتی وجود ندارد. در نسبت عمیق کربنیت درمان نشده با ویتامین E و رشدی‌های دیابتی درمان نشده کاهش معنی‌دار داشت (%).

ضخامت لایه عضلانی دیواره روده کچک

جدول (4) ضخامت دیواره عضلانی را در گروه‌های مختلف در دندان‌های و رزو کربنیت نشان می‌دهد. همان‌طور که در جدول مشاهده می‌شود ضخامت لایه عضلانی در هر سه بخش رو به در رده‌های گروه دیابتی درمان نشده در مقایسه با رشدی‌های سالم افزایش معنی‌دار نشان می‌دهد. در

طول پرز

جدول (1) طول پرز را در هر سه گروه رت در سه قسمت دندان‌های و ابتلاً نشان می‌دهد. همان‌طور که در جدول دیده می‌شود طول پرز در رده‌های دیابتی درمان نشده و سه گروه در مقایسه با موشی‌های سالم در هر سه بخش رو به افزایش معنی‌دار نشان داد اما در مقایسه رشدی‌های
جدول 1- میانگین تغییرات طول برز (μm) در سه کروه مورد مطالعه

<table>
<thead>
<tr>
<th>در کروه دیپاتی درمان شده (شاهد)</th>
<th>(μm) Vit E</th>
<th>در کروه دیپاتی درمان شده با (μm)</th>
<th>(μm) Vit E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
</tr>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
</tr>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
</tr>
</tbody>
</table>

جدول 2- میانگین تغییرات عمق کرپیت (μm) در سه کروه مورد مطالعه

<table>
<thead>
<tr>
<th>در کروه دیپاتی درمان شده (شاهد)</th>
<th>(μm) Vit E</th>
<th>در کروه دیپاتی درمان شده با (μm)</th>
<th>(μm) Vit E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
</tr>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
</tr>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
</tr>
</tbody>
</table>

جدول 3- میانگین تغییرات نسبت طول برز به عمق کرپیت در سه کروه مورد مطالعه

<table>
<thead>
<tr>
<th>در کروه دیپاتی درمان شده (کنترل)</th>
<th>(μm)</th>
<th>در کروه دیپاتی درمان شده (μm) Vit E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
<td>0.59 (22/3)</td>
</tr>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
<td>0.59 (22/3)</td>
</tr>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
<td>0.59 (22/3)</td>
</tr>
</tbody>
</table>

جدول 4- میانگین تغییرات ضخامت لاشه عضلانی دیواره روده کوبک (μm) در سه کروه مورد مطالعه

<table>
<thead>
<tr>
<th>در کروه دیپاتی درمان شده (μm) Vit E</th>
<th>در کروه دیپاتی درمان شده (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
</tr>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
</tr>
<tr>
<td>0.59 (22/3)</td>
<td>7.9 (36/8)</td>
</tr>
</tbody>
</table>
مکانیسم‌های دقیق سلولی و مولکولی نتایج به دست آمده
هدف این مقاله نیست ولی به عنوان شاخص غیرمستقیم برخی
از یافته‌های سایر محققان آوردگی شده است.
کلکو و همکارانش در سال 1997 در مطالعه‌ای نشان دادند که بین میزان رشد روده کوکک و بیشتر شده
گلوکاین (GLP2) II ارتباط نگاشتی وجود دارد. در
مطالعه آنها موش‌های دیابتی دریافت گلکوکینی
و رشد طبیعی روده کوکک را نسبت به گروه کنترل
نشان دادند. در حالی که گروهی که انسولین دریافت
نمی‌کردند، افزایش معنی‌داری در طول پرده‌ها، عمق کریبیت‌ها
و ضخامت دیواره روده کوکک نشان دادند. میزان
نیز در گروه بدون تیمار با انسولین نسبت به گروه سالم
افزایش معنی‌داری نشان داده بود و از آنجایی که
مهمترین ترکیب از نوع پیدایش مشتق از پروگلوکینا
با اثرات تروپیک بر روده است. آنها نتیجه گرفتند
که احتمالاً افزایش GLP2 در غیاب انسولین عامل اصلی
رشد پرده کوکک برای کریبیت‌ها و افزایش ضخامت دیواره روده کوکک
است.

برخی مطالعات هیپورالیزی را مسئول تغییرات تروپیک
بخت‌های روده کوکک می‌دانند. از آنجایی که موشهای
دبایی بسیار بیشتر از موشهای سالم غذا مصرف می‌کنند
ممکن است افزایش بار گوارشی در روده کوکک سبب
افزایش طول روده کوکک بوده که به نوعی تغییری آن در
برابر هر واحد روده است. از طرفی با روده غذای بی‌بیشت
می‌توان به کاهش حمله روده در دیابت احتمالاً هرمون
کاستنی بیشتر ترشح شده است. این موضوع مدل دریافت
روده کوکک می‌گردد. برخی از محققین با همین دلیل،
کاستنی را علت رشد روده کوکک در دیابت می‌دانند.
همچنین که در شاخ مواد و روده و تغییر بیان شده در
مطالعه ما غنایی ماده شده بیش از موشهای دیابتی درمان نشده و
دبایی درمان شده با ویتامین E از نظر جرمی و وزنی
پیگسان بوده و تنها تفاوت در تیمار با ویتامین E بوده است.
اگر بار گوارشی درمان چنین که می‌تواند در روده کوکک، ضخامت لایه عضلانی و طول پرده‌ها را در رده‌ای
دبایی تحت تیمار با ویتامین E تفاوت معنی‌داری با موشهای
گروه کنترل داشته است. در حالی که می‌تواند در رده‌ای
دبایی درمان نشده در مقایسه با رده‌ی دیابتی سالم به عنوان
گروه شاهد تفاوت معنی‌داری داشته است. توصیف

نمودار 3- تغییرات وزن روده به ازای واحد طول روده در
گروه‌های مختلف موشهای مورد آزمایش

معنی‌دار

ربتهای دیابتی درمان شده با ویتامین E ضخامت لایه
عضلانی در بخت‌های مختلف در مقایسه با گروه سالم
اختلاف معنی‌داری ندارند. اما در مقایسه با ربهای دیابتی
درمان نشده در هر سه بخت روده کاذب معنی‌دار وجود
دارد.

بحث

مرور مجدد بخش نتایج نشان داد که در مطالعه این اثرات
ویتامین E توانسته است از اثرات دیابت بر موشهای
روده کوکک جلوگیری کند. همین که وزن و طول روده
کوکک، ضخامت لایه عضلانی و طول پرده‌ها و رشد کاستنی
دبایی تحت تیمار با ویتامین E تفاوت معنی‌داری با موشهای
گروه کنترل داشته است. در حالی که موشهای سالم به عنوان
گروه‌ها شاهد تفاوت معنی‌داری داشته است. توصیف

i- Proglucagone derived - Peptides
پیشرفت‌های گلوکاگون از جمله GLP2GLP1، اکسبیکانتیا از گلوکاگون و ایکس تومودولین در سرول‌های لودونی کیفیتی، از نظر تحریک GLP2GLP1 هورمونی با چرخ تحریک ترشح انسولین است و رشد و حرکت روده کیفیتی، افزایش عضلانی و بی‌خوابی عضلانی بوده. تیمار کوتاه مدت با آدن سبیل مدیر روده می‌شود.17
در موش‌های صحرایی نشان دهنده زیادی از تغییرات ناشی از قطع شده است. تریک GLP2 باعث افزایش رشد روده‌های mRNA بی‌خوابی عضلانی و افزایش بی‌خوابی عضلانی mRNA اثر این‌پی‌های اینترپرولگازون می‌شود.17

پژوهش‌های اینترپرولگازون می‌شود.17

گروها از محققین راه‌یافته‌ای آزاد و عوامل حاصل از استرس‌های محیطی را می‌تواند. نرخ آوری و همکاران عقه‌دار آن را که راه‌یافته‌ای آزاد نش می‌آید. در این روش‌ها، اجراهای بسیاری اشکال‌گیری می‌شود.3 در حالی که تغییرات تغییرات بی‌خوابی به پژوهش‌ها و افزایش اتصال‌های چربی غیر اشباع جنگ زنجیره‌ای آزاد (PUFAS)4 به سیستم راه‌یافته‌ای آزاد و ROS است.18
همچنین شاخص‌های موجود در کلی منک اسکیپت‌ها یکی از اصلی‌ترین روش‌های شایع است.21
ناهنجاری‌های دیابتی داشته درد.

به نظر می‌رسد پراکسیگلاسیون لپیدی و افزایش راه‌یافته‌ی آزاد می‌تواند موجب کاهش حرکات لوله‌هایی که در مواردی با شرایط جنین خون دیگر نیز کاستن را به عنوان عامل رشد روده کیفیتی نشان داد. در موارد که می‌تواند نیکیند.16 از طریق مصرف و همکاران با تحریک منشعب است.16 به آن‌ها سبیل کاهش رشد آنتی‌پلیمر می‌شود.13 اثبات آن موارد از طریق کردن.13 مطالعه این‌راز که‌که روده کیفیتی در دیابت‌ها به صورت گلوکاپتی سیستم‌های با کاهش رشد در اندام‌های دیگر بدن و مخصوصاً کاهش وزن است. به نظر می‌رسد نشان‌هایی که این چهار بخش است.16 تولید و همکاران در مطالعه تأثیر میزان فیبر غذا بر مورفولوژی روده کیفیتی گردید.16 مطالعه آنها حاکی از افزایش وزن روده، افزایش وزن شکم، توده پزشک، و افزایش جهت آن روده کیفیتی است. در موش‌های پیران دیابتی مصرف نکن‌دند. سطح علیه روده‌ای فیبرون GLP2 در موش‌های GLP2 منجر به نوعی درکرک (دیابتی بدون غذا فیبریک) افت‌شده، در نتیجه اثر غذا، طبیعی است. به طور مستقیم اثر ثانی‌های می‌شود.16

از جمله این عوامل تکنیک‌های حاصل از تحقیقی16 اثر تحریکی هورمون تروپیسی نیکیند.16
GLP2(2)16 هورمون GLP2 افزایش پیشنهاد کنن. در این روش‌ها، افزایش غذایی به وسیله باکتری‌های چربی، زنجیر کوتاه (SCFAs)16 که فرم‌های بودتیک، پروپیونیک، و اسید است.16 اثر مستقیم این موارد بر ایلیوم روده‌ای فیبرون مکنن. این موارد، به دنبال این ترکیبات به نظر می‌رسد بی‌بستریان کنن.16

vi- Glycentin
vii- Oxytomodulin
ix- Disorders
x- Poly Unsaturated Fatty Acids
xi- Etiology

i- Satiety
ii- Multifactorial
iii- Fermentation
iv- Glucagon like peptide 2
v- Short chain fatty acids
vi- Intracally

\[\text{همچنین مصرف و دیابت E در چند مورد موجب بهبود هیپرتوفریکی می‌شود.} \]

\[E \]

\[\text{بهبود در دیابت E از این طریق کاهش توده است. این اثر ویتامین E از راه کاهش آسیب‌های بدنی شده باعث جذب بهبود هیپرتوفریکی E می‌شود.} \]

\[E \]

\[\text{خسته شده است. در موارد صورت گرفته یک آنتی‌کانسیپین همانند هیپرتوفریکی سبب بهبود همبستگی می‌شود و بازگشت سرعت همی را باعث می‌شود.} \]

\[E \]

\[\text{همچنین مصرف و دیابت E در چند مورد موجب بهبود توده است. این اثر ویتامین E از راه کاهش آسیب‌های بدنی شده باعث جذب بهبود هیپرتوفریکی E می‌شود.} \]

\[E \]

\[\text{بهبود در دیابت E از این طریق کاهش توده است. این اثر ویتامین E از راه کاهش آسیب‌های بدنی شده باعث جذب بهبود هیپرتوفریکی E می‌شود.} \]

\[E \]

\[\text{خسته شده است. در موارد صورت گرفته یک آنتی‌کانسیپین همانند هیپرتوفریکی سبب بهبود همبستگی می‌شود و بازگشت سرعت همی را باعث می‌شود.} \]

\[E \]

\[\text{همچنین مصرف و دیابت E در چند مورد موجب بهبود توده است. این اثر ویتامین E از راه کاهش آسیب‌های بدنی شده باعث جذب بهبود هیپرتوفریکی E می‌شود.} \]

\[E \]

\[\text{بهبود در دیابت E از این طریق کاهش توده است. این اثر ویتامین E از راه کاهش آسیب‌های بدنی شده باعث جذب بهبود هیپرتوفریکی E می‌شود.} \]

\[E \]

\[\text{خسته شده است. در موارد صورت گرفته یک آنتی‌کانسیپین همانند هیپرتوفریکی سبب بهبود همبستگی می‌شود و بازگشت سرعت همی را باعث می‌شود.} \]

\[E \]

\[\text{همچنین مصرف و دیابت E در چند مورد موجب بهبود توده است. این اثر ویتامین E از راه کاهش آسیب‌های بدنی شده باعث جذب بهبود هیپرتوفریکی E می‌شود.} \]

\[E \]

\[\text{بهبود در دیابت E از این طریق کاهش توده است. این اثر ویتامین E از راه کاهش آسیب‌های بدنی شده باعث جذب بهبود هیپرتوفریکی E می‌شود.} \]

\[E \]

\[\text{خسته شده است. در موارد صورت گرفته یک آنتی‌کانسیپین همانند هیپرتوفریکی سبب بهبود همبستگی می‌شود و بازگشت سرعت همی را باعث می‌شود.} \]

\[E \]

