تغییرات محیطی پیش از تولد و پس از آن می‌تواند مسیر تکامل سیستماتیک مختلف بدن را به‌دست‌آورد که منجر به برخورداری با افراد مبتلا به اختلالات متابولیسم گلوکز 1 و 2 می‌شود. قطرکارهای بنیان‌گذاری‌های پیچیده در دوران پیش از بارداری، بارداری و پس از آن از گروه‌های علت‌های لاغری در زاده‌های بیشترین یا کمتر از گروه‌های اولیه بود. در برخی از این مطالعات ضمن افزایش سطح انسولین، افزایش غلظت پلاسمایی گلوکز و در برخی عدم تغییر آن 1 در حالی که نشان دهنده فاکتورهای بیشتری است که با توجه به شیوع بالا و توانایی مادران با مصرف آن‌ها در جوامع امرول در نداشتن ضایعه و روند بالارفته‌ای را همچنین به دلیل مواجهه جنین با ماده غذایی بیش از حد در طول مادر. می‌تواند زمینه‌ساز برخی اختلالات متابولیسم در
مواد و روش‌ها

تعداد ۲٠ سر موش صحرایی ماده نژاد ویستار به طور تصادفی به دو گروه مصرف‌کننده غذای عمومی (N) و پرچم (HF) تقسیم شدند. نتایج هر گروه در دوره‌های پیش از بارداری (۴ هفته)، بارداری و شیردهی از رژیم‌های غذایی مربوط به خود استفاده کردند. غذای عمومی (N) استاندارد، تولید شده توسط شرکت پاس پارس، ایران) حاوی ۲ گرم روزانه دانه‌سی سویا در هر گرم (۷/۵ درصد گرلکولاری انزیمی از چربی) بود. غذای پرچم حاوی ۵ درصد وزنی پلت استاندارد مخلوط شده با ۲۵ درصد وزنی گرلکولاری اتری بر روی غذای عمومی بود. در جدول ۱ استفاده چربی در رژیم غذایی عمومی و پرچم نشان داده شده است. در این مطالعه تمامی حیوانات به اندازه آب و غذا دسترسی شدند. در دمای کنترل شده (۱۲±۲ درجه سانتی‌گراد) خاموشی قرار گرفتند. سپس تا تولید نمایه همگن و مراقبت کیسه از زادگان بیشتری تعداد زاده‌ها بر اساس ۸ را برای هر مادر تنظیم شد.

از پایان شیرخوارگی، زاده‌ها نر جدای شده (در قفسه‌های ۲ تا ۵) و تا پایان دوره آزمایش (۱۰ هفته) غذای عمومی به‌طور آزاد در اختیار آن‌ها قرار گرفت. این زاده‌ها در ۸ هفته بر اساس رژیم غذایی مادر و مواجه با استرس به چهار گروه به شرح زیر تقسیم شدند: NC، رژه‌های نوزادان مصرف‌کننده غذای عمومی که در دوره‌های بلع استرس دریافت نکردند. HFC: رژه‌های نوزادان مصرف‌کننده غذای پرچم که در دوره‌های بلع استرس دریافت نکردند. NS: رژه‌های نوزادان مصرف‌کننده غذای عمومی که در دوره‌های بلع استرس دریافت نکردند. HFS: رژه‌های نوزادان مصرف‌کننده غذای پرچم که در دوره‌های بلع استرس دریافت کردند.

گروه‌های استرس در پایان هفتگی به مدت دو هفته استرس تغییر در دی ریافته کردن. در پایان هفته نوزادان تجمیع گری در شرایط ناشا آن زاده‌ها انحل شده و پس از تشخیص حیاتی، چربی شکمی جدا و تغییر بود. در طول دوره آزمایش، وزن حیاتی، میزان غذا و کالری دریافتی آن‌ها هفته‌ها در بار اندازه‌گیری شد. نویستگان نتایج استرس در نتایج پلاسمای گلوکز (HOMA-IR)، شاخص (HOMA-IR) و سطح انسولین پلاسمایی در زاده‌ها گزارش شده است. در مطالعات متعادل در موش‌های صحرایی مدل شده از مادران مصرف‌کننده غذای پرچم، اختلال در عملکرد سیستم نرواندکریم و متابولیسم گلوکز در ژن‌های VF و HOMA-IR مشاهده شده است. در نتایج پلاسمای گلوکز در زاده‌ها عامل استرس‌زای سالی‌کورکینون بیشتری و تغییر در درمان‌به‌زی ماروور HOMA-IR با HPA استرس در دوره‌های بدنی زندگی است. استرس و همکاران مشاهده نمودند که همین‌را رژیم پرچم مادر (۰ درصد چربی) در دوره شیردهی، ترشح ACTH و پلاسمه با استرس جداسازی از مادر و مواجه با اثر در موش‌های صحرایی ۱۱ روز کمک و در مواجه با استرس شناوری. در ۳۰ روز گروه آزمایش یافت. بر اساس مطالعات متعادل که آثار رژیم غذایی پرچم بر کاهش، تغییر و مراتب یکسان از زادگان بیشتری، تعداد زاده‌ها بر اساس ۸ را برای هر مادر تنظیم شد. از پایان شیرخوارگی، زاده‌ها نر جدای شده (در قفسه‌های ۲ تا ۵) و تا پایان دوره آزمایش (۱۰ هفته) غذای عمومی به‌طور آزاد در اختیار آن‌ها قرار گرفت. این زاده‌ها در ۸ هفته بر اساس رژیم غذایی مادر و مواجه با استرس به چهار گروه به شرح زیر تقسیم شدند: NC، رژه‌های نوزادان مصرف‌کننده غذای عمومی که در دوره‌های بلع استرس دریافت نکردند. HFC: رژه‌های نوزادان مصرف‌کننده غذای پرچم که در دوره‌های بلع استرس دریافت نکردند. NS: رژه‌های نوزادان مصرف‌کننده غذای عمومی که در دوره‌های بلع استرس دریافت نکردند. HFS: رژه‌های نوزادان مصرف‌کننده غذای پرچم که در دوره‌های بلع استرس دریافت کردند.

vi- Variable stress
جدول ۱- ترکیب استیمپلیکری مصرفی غذا و برچسب به کار رفته

<table>
<thead>
<tr>
<th>نوع استیمپلیکری</th>
<th>غذا پرچرب</th>
<th>غذا معمولی</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوریک اسید</td>
<td>5/5/0</td>
<td>C12:0</td>
</tr>
<tr>
<td>میریستیک اسید</td>
<td>3/8/0</td>
<td>C14:0</td>
</tr>
<tr>
<td>پالیمیتیک اسید</td>
<td>8/5/0</td>
<td>C16:0</td>
</tr>
<tr>
<td>پالمیتولیک اسید</td>
<td>3/5/0</td>
<td>C16:1 c n-7</td>
</tr>
<tr>
<td>مارکاریک اسید</td>
<td>1/5/0</td>
<td>C17:0</td>
</tr>
<tr>
<td>استریک اسید</td>
<td>3/8/0</td>
<td>C18:0</td>
</tr>
<tr>
<td>اکتیک اسید</td>
<td>3/8/0</td>
<td>C18:1 c n-9</td>
</tr>
<tr>
<td>لپولیلیک اسید</td>
<td>3/8/0</td>
<td>C18:2 c n-6</td>
</tr>
<tr>
<td>کانا لپولیلیک اسید</td>
<td>3/8/0</td>
<td>C18:3 c n-6</td>
</tr>
<tr>
<td>آراشیدیک اسید</td>
<td>1/5/0</td>
<td>C20:0</td>
</tr>
<tr>
<td>پالمیتیک اسید</td>
<td>2/5/0</td>
<td>C20:1 c n-7</td>
</tr>
<tr>
<td>هپتیک اسید</td>
<td>2/0/0</td>
<td>C22:0</td>
</tr>
<tr>
<td>لیپوسیک اسید</td>
<td>2/5/0</td>
<td>C24:0</td>
</tr>
<tr>
<td>سابر</td>
<td>2/3/0</td>
<td></td>
</tr>
</tbody>
</table>

اندازه‌گیری وزن دن و میزان مصرف غذا

از زمان تولد تا پایان آزمایش وزن دن و میزان غذا مصرفی کاری که در اکثریت جویان مورد مطالعه، مشاهده گردید. برای بررسی توزیع وتغییر وزن میزان غذا مصرفی، ۲۴ ساعت پس از قرار دادن میزان مصرف غذا در اکثریت گاه‌شانه شده محاسبه و بر تعداد جویان هر قسم تفسیم شد و میزان غذا دریافتی روزانه هر حیوان به دست آمد. همچنین از حاصل ضرب وزن غذا مصرف شده توسط هر حیوان در انرژی موجود در هر گرم غذای مصرفی، میزان کالری دریافتی روزانه (بر حسب کیلوکالری) محاسبه گردید.

پروکل استرس

در پایان‌های هفتگی به‌مدت دو هفته زده‌های نر در دو گروه HFS و NS به همراه استرس قرار گرفتند. به منظور جلوگیری از ساس نرفته یا استرس به کاربرد شد. از عوامل استرس‌زای متغیر به شرح زیر و در روزها و زمان‌های مختلف طبق جدول ۲ استفاده شد:

i- Plexiglas
ii- Stimulator
iii- Overcrowding stress
محاسبات آماری

اطلاعات به صورت میانگین نهایی استاندارد SPSS به منظور بررسی تاثیر از نهایت آماری IBM SPSS (نسخه 23) استفاده شد. بررسی آماری (آزمون کلمورف اینسونف) نمایش بود توزیع داده‌ها را نشان داد. در مقایسه رقیم‌های مختلف در گروه‌ها از آزمون آنالیز واریانس دو طرفه (Two-way ANOVA) در نظر گرفت فاکتورهای مستقل رقیم و استرس) به همراه تست تعقیبی استفاده شد. در تمام موارد 0.05 ≤ P به عنوان مرجع بودن اختلافات در نظر گرفته شد.

یافته‌ها

اثر رقیم غذایی پرچرب مادر و استرس بر وزن بدن

میزان مصرف غذا در دو دایره کالری در زاده‌ها قبل از آغاز دوره استرس، وزن بدن کل زاده‌های مادران گروه‌های پرچرب (HFS و HFC) و NC نسبت به کل زاده‌های مادران با رقیم غذایی معنی‌دار (گروه‌های NC و NS) از روز چهارم پس از تولد به مقدار کمتر بود (P<0.01). در دوره استرس (روزهای 65 تا 70) نیز وزن بدن زاده‌های گروه HFS در روزهای 1 تا 4 و 7 (P=0.04) و 10 (P=0.002) کاست شر (P<0.001 و پ<0.001) در روزهای 7 و 17 (P<0.001) بین جمعیت‌های بدن گروه NC حیوانات گروه NC در مقایسه با گروه NC نیز وزن بدن زاده‌های گروه NC (P=0.267 و P=0.10) در سطح پس-آزمون (P<0.001 و پ<0.001) را پایین قرار داده (نمراد 1-الف).

خون‌گیری و اندازه‌گیری فاکتورهای پلسمایی

خون‌گیری در زاده‌ها در پایان دوره آزمایش (10) مگاگلی در شرکت‌های شانتا و بیشتر خون‌گیری از دم به‌دلیل بیهوشی با تزریق داخل صافی مسدومپنیو بین (10 میلی‌گرم پر کیلوگرم) انجام شد. خون در میکروتیپ (500 IU/ml) حاوی مهاری (0) میلی‌لیتر خون) جمع آوری و با سرعت 3000 دور در دقیقه به مدت 10 دقیقه سانتریفیژ شد. سپس پلاسمایی آن جدا شده و به فریزور 80- درجه سانتی‌گراد متفاوت گردید.

گلردک پلاسمای در روش گلزک اکتیبی (حداکثر حساسیت 5 میلی‌گرم بر کیلوگرم و با ضریب تغییرات درون آزمونی 2/8 درصد) (شکست پارس آزمایش) ایران) انقلابه (ENPA با استفاده از کیت اسپرینگ پلاتسومه توان صحرایی) 2/8 هزار IU/ml درون آزمونی 2/8 درصد (شکست Dr. Merck) درون آزمونی 2/8 درصد (شکست Dr. Merck) در نتیجه کرتوکسترون ضریب تغییرات درون آزمونی 2/8 درصد (شکست DRG Alman) و لپتوس پلاسما با استفاده از کیت اسپرینگ پلاتسومه توان صحرایی (حداکثر حساسیت 2/8 هزار IU/ml درون آزمونی 2/8 درصد) (شکست CUSABIO).

جدول 2- برنامه استرس متغیر

<table>
<thead>
<tr>
<th>نوع استرس</th>
<th>زمان استرس</th>
<th>روزهای استرس</th>
</tr>
</thead>
<tbody>
<tr>
<td>صحیح</td>
<td>شکر کننده</td>
<td>1</td>
</tr>
<tr>
<td>صحیح</td>
<td>محدود کننده</td>
<td>2</td>
</tr>
<tr>
<td>سبیع شور</td>
<td>محدود کننده</td>
<td>4</td>
</tr>
<tr>
<td>صحیح</td>
<td>شکر کننده</td>
<td>5</td>
</tr>
<tr>
<td>صحیح</td>
<td>محدود کننده</td>
<td>6</td>
</tr>
<tr>
<td>سبیع شور</td>
<td>محدود کننده</td>
<td>8</td>
</tr>
<tr>
<td>صحیح</td>
<td>محدود کننده</td>
<td>10</td>
</tr>
<tr>
<td>صحیح</td>
<td>محدود کننده</td>
<td>12</td>
</tr>
<tr>
<td>صحیح</td>
<td>محدود کننده</td>
<td>14</td>
</tr>
</tbody>
</table>
نمودار 1-ب، ج) در حالت که در گروه HFS فقط در روز ۲۶ (P < ۰/۰۰۰) کاهش معنی‌داری نشان داد، و نسبت به گروه NS نیز فقط در روز ۵۶ (P < ۰/۰۰۰) کاهش معنی‌داری نشان داد.

(۲۸) محاسبه سطح زیر معنی‌داری بندن، میزان مصرف غذا و دریافت کالری داده که رژیم غذایی پرچرب مادربه تهیه در گروه HFC سبب کاهش وزن بدن (۰/۱۰/۰۰۰) نبود (نمودار ۱-ب، ج).
نمودار 1- اثر رژیم غذایی پرچرب مادر و استرس متغیر بر میزان تغییرات و سطح زیر منحنی وزن بدن (الف، د) میزان مصرف غذا (ب، ه) و دریافت کالری (ج، و) در زاده‌های نر بالغ. هر نقطه با سطون مشخصه، داده می‌باشد. انحراف معیار برای 8 سر موش صحرایی است. NC، زاده‌های مادران مصرف‌کننده غذای معمولی که در دوره بلوغ انسداد صحرایی است. HFC، زاده‌های مادران مصرف‌کننده غذاهای پرچرب که در دوره بلوغ انسداد صحرایی ایست. HFS، غذاهای معمولی که در دوره بلوغ انسداد صحرایی صورت گرفته‌اند و در دوره بلوغ انسداد صحرایی ایست. NS، غذاهای معمولی که در دوره بلوغ انسداد صحرایی صورت گرفته‌اند و در دوره بلوغ انسداد صحرایی ایست. پ- HFS، AUC، سطح زیر منحنی، AUC، i-Area Under the Curve.
دکتر رکسانا کریم‌نژاد و همکاران

آذر رژیم غذایی پرچرب مادر و استرس بر غلفت‌های پلاسمایی کلسترول و انسولین و شاخص هوایی در HOMA-IR زاده‌ها

همان‌طور که در جدول 3 دیده می‌شود، رژیم غذایی پرچرب مادر به تنها نتیجه در HFC استرس به تنها بخش HOMA-IR شاخص‌ها بوضوح نسبت به HFC و نسبت به HFS اثر رژیم غذایی پرچرب مادر و استرس بر غلفت‌های پلاسمایی کلسترول و لیپتین و وزن چربی شکمی در زاده‌ها رژیم غذایی پرچرب مادر به تنها نسبت به کاهش غلفت‌های کورتیکوسترون و لیپتین و وزن چربی شکمی در زاده‌ها نسبت به HFC به‌طور قابل ملاحظه‌ای جلوگیری از درگیری استرس در روان‌سنجشی مصرف‌کنندگان غذای پرچرب و وزن چربی در زاده‌ها نسبت به HFC به‌طور قابل ملاحظه‌ای کاهش داد (P<.01). از سوی دیگر، استرس در زاده‌های مصرف‌کننده غذای پرچرب و وزن چربی در زاده‌ها نسبت به HFC به‌طور قابل ملاحظه‌ای کاهش داده شد (P<.01).
Korotkoverston in Sprague Dawley rats on an orexigenic cafeteria diet对照的
Korotkoverston in Sprague Dawley rats on a no-orexigenic cafeteria diet with
Korotkoverston in Sprague Dawley rats on a no-orexigenic cafeteria diet
Korotkoverston in Sprague Dawley rats on a no-orexigenic cafeteria diet
Korotkoverston in Sprague Dawley rats on a no-orexigenic cafeteria diet
References

Hypothalamic Gene Expressions in Mice Endocrinol Metab (Seoul) 2013; 28: 288–96.

Original Article

The Effect of Maternal High-Fat Feeding on Energy Homeostasis in Stressed Adult Male Rat Offspring

Karbaschi R¹, Zardooz H²

¹Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
²Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran.

e-mail: homeira_zardoz@sbmu.ac.ir

Received: 10/02/2019 Accepted: 30/04/2019

Abstract

Introduction: In the present study the effect of chronic maternal high-fat diet consumption on energy homeostasis and glucose metabolism in response to chronic stress was investigated in adult male rats. Materials and Methods: Female rats were divided into two groups of normal and high fat diets. Each group received their diet from 3 weeks before pregnancy until the end of lactation. At 8 weeks of age, male offspring were divided into control and stress groups, the stress group receiving variable stress for 2 weeks. At the end of 10 weeks, plasma concentrations of glucose, insulin, corticosterone and leptin were measured and intra-abdominal fat was weighed in all male offspring. The body weight, food and calorie intake of the rats were also measured. Results: Maternal high-fat diet alone reduced intra-abdominal fat weight, plasma concentrations of corticosterone and leptin, body weight, food and calorie intake, although it had no effect on fasting plasma glucose and insulin concentrations, or on HOMA-IR index. In response to stress, the maternal high-fat diet reduced corticosterone and leptin plasma concentrations, body weight, food and calorie intake compared to the control group; whereas did not significantly change the intra-abdominal fat weight, plasma glucose and insulin levels as well as HOMA-IR index. Conclusion: From the results of the present study it seems we can conclude that maternal HFD feeding, in a critical developmental period (perinatal), by altering responsiveness of hypothalamic-pituitary-adrenal axis and/or central leptin sensitivity, exacerbates impaired energy homeostasis in stressed adult offspring.

Keywords: Maternal high-fat diet, Energy homeostasis, Stress, Offspring