اثر مصرف رژیم غذایی پرچرب مادر بر هوموستات انرژی در زاده‌ها

بر اثر استرس دیده در موس صحرایی

دکتر رکسانا نادری

چکیده

مقدمه: در مطالعه حاضر اثر مصرف رژیم غذایی پرچرب مادر بر هوموستات انرژی و متابولیسم گلوکز در زاده‌ها بالغ نسبت به دنبال استرس مزمن و دیابت مزمن و مورد و روش‌ها و موشک‌های صحرایی ماده به دو گروه رژیم غذایی معمول و پرچرب تعبیه کردن و در تحقیق محلی، شناسایی تغییرات پاتولوژیکی در مادر سه گروه مادری که در مراحل مختلف تنوع در این دریافتهای انرژی و فوریت این شخصیت تهدید شده بودند، به درمانی که بر اثر طراحی واقعیت دریافت کرده و در پایان 10 هفته نمونه‌گیری، مادراناگه کلینیکی و رشد کلی زاده‌های نیز فاکتورهای غذایی پرچرب فیزیولوژی، دکتر حمیده زردهور

email: homeira_zardooz@sbmu.ac.ir

واژگان کلیدی: رژیم غذایی پرچرب مادر، هوموستات انرژی، استرس، زاده‌ها

دریافت مقاله: ۹۸/۱۱/۲۳ - دریافت اصلاحیه:۹۸/۱۲/۵ - پذیرش مقاله: ۹۸/۱۲/۱۱

پژوهشگری از جمله تغییرات در توانایی انرژی و پاسخ به استرس و به عنوان عوامل پایه‌گذار اختلالات متابولیسم گلوکز گفته می‌شود. طبق کارگزاری‌ها، به‌نیاز مصرف غذای پرچرب در دو روش یک از پارادیگم بارداری و بارداری و شیردهی غذای پلی میکرویژن در زاده‌ها یک شیفت از گروه شاده، بود. در برخی از این مطالعات ضمن افزایش سطح استرس، افزایش غذای پلی میکرویژن گلوکز از در برخی عدم تغییر آن در حالت ناشتا گزارش شده است. در مطالعات دیگری در موش‌ها صحرایی و «mice» به‌نیت مصرف غذای پرچرب در دوره‌های بارداری و شیردهی، افزایش

تغییرات محیطی پیش از تولد و پس از آن می‌تواند مسبب تکامل سیستم‌های مختلف بدن را به نحوی تعیین دهد که منجر به بروز اختلالات متابولیک در آینده شود. ۱۰ مصرف غذاهای هنری از جنسیت یکی از مهم‌ترین عوامل ایجادکننده تغییر در تکنیک‌های تغییرات محیطی است که با توجه به شیوع بالا و تعامل مادران به مصرف آن‌ها در جوامع امروزی سلامت مادر و روند بارداری را تهدید می‌سازد. همچنین با دلیل مواجهه جنین با مولت غذایی بیش از حد از سوی مادر، می‌تواند زمینه‌سازی بر پرور اختلالات متابولیک در
مواد و روش‌ها

تعداد ۳۰ موس حشره‌ای ماده زاد و پیستار بطور تصادفی به دو گروه مصرف‌کننده غلیظ معمولی (N) و پرچرب (HF) تقسیم شدند. حیوانات هر گروه در دوره‌های پیش از بارداری (۴ هفته)، بارداری و شیردهی از رژیم‌های غذایی مربوط به خود استفاده کردند. غلیظ معمولی (پت استاندارد) تولید شده توسط شرکت پارس، ایران) حاوی ۲ کرم روده دانه سیوی در هر گرم (۷۵/۴ درصد گلولداران انرژی از چربی) بود. در جدول ۱ استاندارد مخلوط شده با ۳۵ درصد وژنی کره حیوانات (۸/۷ درصد گلولداران انرژی از چربی) بود. در این مطالعه تمامی پیچرب و شیردهی نشان داده است. از این مطالعه تماشای حیوانات هر آزمایش و گروه‌بندی دو رژیم غذایی با تغذیه و مراقبت یکسان از زاده‌ها پایان شری ویدس، این است. زاده‌ها از این مادر به راه مادر تنست.

از پایان شیر خوارگی، زاده‌ها نر از چند شده (در فقس‌های ۲ تا ۱۰ تا پایان دوره آمایش (۱۰ هفته) غلیظ معمولی برآورده بود. در این اثر آن رژیم گرفته و این زاده‌ها از هفتگی بر اساس رژیم غذایی مادر و مواجه با استرس به چهار گروه به شرح زیر تقسیم شدند: NC، رژایده‌های مصرف‌کننده غلیظ معمولی که در دوره بلغ استرس دریافت نکردند. HFC: زاده‌های مادران مصرف‌کننده غلیظ پرچرب که در دوره بلغ استرس دریافت نکردند. ZA: زاده‌های مادران مصرف‌کننده غلیظ معمولی که در دوره بلغ استرس دریافت نکردند. HFS: زاده‌های مادران مصرف‌کننده غلیظ معمولی که در دوره بلغ استرس دریافت نکردند.

g<h6>
vi - Variable stress
</h6>
احتمال‌کردن حیوان: این نوع استرس با قرار دادن حیوان داخل Restrainer به سمت یک سایر اعمال شد. Restrainer دارای قطر داخلی ۹ و طول ۱۱ سانتی‌متر از جنس پلیکس‌گلیس و دارای منافذ جهت تنش حیوان می‌باشد. استرس می‌تواند با قرار دادن حیوان به مدت ۲۴ ساعت در محدوده اسلط شلور (۷ تا ۸ موه در یک قفس) در مورد این نوع حیوان نیز مؤثر می‌باشد.

<table>
<thead>
<tr>
<th>نوع اسکای شکوکتریکی</th>
<th>اسکای شکوکتریکی</th>
<th>اسم</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱. ۳۷</td>
<td>لوریک اسید</td>
<td>C12:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۳۷</td>
<td>ملیسیک اسید</td>
<td>C14:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>پالپینیک اسید</td>
<td>C16:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>پالپینیک اسید</td>
<td>C16:1c n-7</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>مارگارک اسید</td>
<td>C17:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>استریک اسید</td>
<td>C18:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>اولئیک اسید</td>
<td>C18:1c n-9</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>اولئیک اسید</td>
<td>C18:2c n-6</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>کاپیلیک اسید</td>
<td>C18:3c n-6</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>آراپیدینک اسید</td>
<td>C20:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>پالپینیک اسید</td>
<td>C20:1c n-7</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>پلیپینیک اسید</td>
<td>C22:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>پلیپینیک اسید</td>
<td>C24:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>لیگوپیرک اسید</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نوع اسکای شکوکتریکی</th>
<th>اسکای شکوکتریکی</th>
<th>اسم</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱. ۴</td>
<td>لوریک اسید</td>
<td>C12:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>ملیسیک اسید</td>
<td>C14:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>پالپینیک اسید</td>
<td>C16:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>پالپینیک اسید</td>
<td>C16:1c n-7</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>مارگارک اسید</td>
<td>C17:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>استریک اسید</td>
<td>C18:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>اولئیک اسید</td>
<td>C18:1c n-9</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>اولئیک اسید</td>
<td>C18:2c n-6</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>کاپیلیک اسید</td>
<td>C18:3c n-6</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>آراپیدینک اسید</td>
<td>C20:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>پالپینیک اسید</td>
<td>C20:1c n-7</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>پلیپینیک اسید</td>
<td>C22:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>پلیپینیک اسید</td>
<td>C24:0</td>
<td></td>
</tr>
<tr>
<td>۱. ۴</td>
<td>لیگوپیرک اسید</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

نتایج: احتمال‌کردن حیوان به مدت ۲۴ ساعت در حیوانات مورد مطالعه تنها با استرس می‌تواند منجر به افزایش هورمون‌های فشار و استرس شود. این امر باعث می‌شود که حیوانات به‌طور قابل‌توجهی نیازمند به دسترس راه‌حل‌های ضروری شوند.
محاسبات آماری

اطلاعات به صورت میانگین‌گیری معتبر استاندارد SPSS (IBM SPSS) نشان دهنده است. بررسی آماری (آزمون کلموکرف اسپیریتوس) نقل بود توزیع داده‌ها را نشان داد. در مقایسه رقیم‌های مختلف در کروه‌ها از آزمون آنالیز واریانس دو طرفه (Two-way ANOVA) در نظر گرفت. فاکتورهای مستقل رقیم و استرس (با LSD تست تطبیقی استعداد شد) در تمام موارد به‌طور معنی‌داری اختلافات در نظر گرفته شد.

<table>
<thead>
<tr>
<th>جدول 2 - برنامه استرس متغیر</th>
<th>روژه‌های استرس</th>
<th>نوع استرس</th>
<th>ضریب</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>شوک الکتریکی</td>
<td>صبح</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>مصرف نکده</td>
<td>صبح</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>مصرف شورغ</td>
<td>صبح</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>مصرف نکده</td>
<td>عصر</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>مصرف شورغ</td>
<td>صبح</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>مصرف نکده</td>
<td>صبح</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>مصرف شورغ</td>
<td>صبح</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>مصرف نکده</td>
<td>صبح</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>مصرف شورغ</td>
<td>صبح</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>مصرف نکده</td>
<td>صبح</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>مصرف شورغ</td>
<td>صبح</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>مصرف نکده</td>
<td>صبح</td>
<td>12</td>
</tr>
</tbody>
</table>

پایین‌ترین قرار داشت (نمراد 1-الف)

غلومکس پلاسمای دارا گلزک‌گیر کسب کرده‌است (تحادل حساسیت 5 میلگرم بر کیلوگرم) با ضریب تغییرات درون آزمونی 1/2 (درصد) (شکارپارس آزمونی ایران) انسولین پلاسما با استفاده از کیت اسکلرول موارد صحرایی (تحادل حساسیت 7 میلگرم بر لیتر) و با ضریب تغییرات درون آزمونی 3/2 (شکارپارسMercodia). درون آزمونی 2/3 (درصد) (شکارپارس DRG. آلمان) و لپشن پلاسمای با استفاده از کیت الکتریزی لپشن موارد صحرایی (تحادل حساسیت 8/3000 تانولوم در لیتر) (شکارپارس CUSABIO).

* - Statistical Package for the Social Sciences
میزان مصرف غذا (P=0.004), و دریافت کالری (P=0.0002) فقط در نداد (نمودار 1-ب، چ) در حالت که در گروه کنترل از گروه بوک و پس از آن در گروه های ۲۷ به گروه NC تنها گروه HFS در روزهای ۶۰ و ۳۷ نسبت به گروه NC کاهش معنی‌داری نشان داد (P=0.028) (کنترل بوک (نمودار 1-ب، چ). محاسبه سطح زیرمنحنی وزن بدن، میزان مصرف غذا و دریافت کالری نشان داد که رژیم غذایی پرچرب مادر به نهایی در گروه HFC سبب کاهش وزن بدن (P=0.0001) (نمودار 1 د، چ).
نمودار ۱- اثر رژیم غذایی پرچرب مادر و استرس متغیر بر میزان تغییرات و سطح زیر منحنی وزن بدن (الف، د) میزان مصرف غذا (بر / ه) و دریافت کالری (چ) در زاده‌های نر بالغ

هر نقطه با ستون نشان‌دهنده میانگین ± انحراف معیار برای ۸ موش صحرایی است. NC: زاده‌های مادران مصرف‌کننده غذای معمولی که در دوره قبلی خانم‌های بدون استرس دریافت کرده‌اند. HFC: زاده‌های مادران مصرف‌کننده غذای پرچرب که در دوره قبلی خانم‌های استرس دریافت کرده‌اند. HFS: غذای معمولی که در دوره قبلی خانم‌های استرس دریافت کرده‌اند. نشان‌دهنده بهبود در مقایسه با غذای پرچرب در دوره قبلی است. AUC: Sطح زیر منحنی. * P<0.05 نسبت به NC; † P<0.05 نسبت به HFC; ‡ P<0.05 نسبت به HFS; § P<0.05 در مقایسه با NC در غذای پرچرب در دوره قبلی. i-Area Under the Curve
بحث

نتایج حاصل از این مطالعه نشان داد که در زاده‌های مادران صورت‌کندی‌های غنایی پرچمی در مقایسه با کناره‌های غنایی پرچمی در حضور و عدم حضور استرس، نسل پلیم سه گاه یافتند. در حالی که کمیتی مصرف HOMA-IR، شاخص و شاخص غنایی پرچمی مادران و استرس، ممکن بشه تهیه سبب کاهش وزن ورودی نکته در زاده‌ها شد. در حالی که زاده‌های غنایی پرچمی مادران توانایی استرس تغییر معناداری در وزن ورودی نکته، در زاده‌های مادران صورت‌کندی‌های غنایی پرچمی و وزن بدن، میزان مصرف غذا در نکته‌های کاهش یافت که این کاهش در حضور استرس دوران بلوغ نسبت به قروه شاهده به‌طور گسترده بود.

در مطالعات خود، وزن کناره‌ها در دوری شیمی‌پاتی می‌تواند به‌عنوان یک کانال در مصرف غذا در کناره‌ها به‌طور گسترده بود و سبب کاهش وزن ورودی در کناره‌ها شد. در حالی که هیچ داده‌ای از استرس در زاده‌ها در کناره‌ها نشان داد. به‌طور کلی، در مقایسه با کناره‌ها، نسل پلیم سه گاه یافت که این کاهش در حضور استرس دوران بلوغ نسبت به قروه شاهده به‌طور گسترده بود.

اثر رژیم غذایی پرچمی مادر و استرس بر غلفت‌های HOMA-IR، کلسترول و انسولین و شاخص غنایی پرچمی مادران نسل پلیم سه گاه همان‌طور که در جدول ۳ نشان داده است، رژیم غذایی پرچمی مادر به‌طور ت鲱یبی آنتی اسکلزین گردیده است. HFC در زاده‌ها نسبت به قروه به‌طور ت鲱یبی می‌باشد.

جدول ۳: اثر رژیم غذایی پرچمی مادر و استرس متغیر (در زیرکسالی) بر غلفت‌های ناشی از تاریم‌های پلیمی. وزن ورودی نکته و HOMA-IR، شاخص و انسولین و کلسترول

<table>
<thead>
<tr>
<th>شاخص</th>
<th>کلسترول (میلی‌گرم بر لیتر)</th>
<th>انسولین (میلی‌گرم بر لیتر)</th>
<th>کناره (سیالیت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMA-IR</td>
<td>HFS</td>
<td>HFC</td>
<td>NC</td>
</tr>
<tr>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
</tbody>
</table>

در کناره‌ها و C مادران صورت‌کندی‌های غنایی پرچمی توانایی استرس، نسل پلیم سه گاه یافتند. در حالی که هیچ داده‌ای از استرس در زاده‌ها در کناره‌ها نشان داد. به‌طور کلی، در مقایسه با کناره‌ها، نسل پلیم سه گاه یافت که این کاهش در حضور استرس دوران بلوغ نسبت به قروه شاهده به‌طور گسترده بود.
کورتیکوسترون در جویان درصدی بر مصرف غذا، مصرف دخیل و کم‌دریافتی کالری در دوره شیرخواری کم است. در بافت زندگی و دنیای زندگی که این‌ها کلاه‌های برف‌آب جهت در سوی دیگر سطح بالای کورتیکوسترون انتقال یافته به زادگو می‌تواند تکامل سیستم نورون‌کانترل هیپوتالاموس و میزان این زن پیش‌بینی شده است (مانند گردن) باعث صفره تغییر و در تحقیق با اخلاق در سرکل‌ها. به همین‌طور، انت‌زی در جریانات میزان مصرف غذا، کالری دیروزی و وزن‌گیری را در آن کاملاً هدف می‌شود. درصد دسر باید بازنشانی داده‌اند که زادگوی مادران مصرف کننده غذای پرچم دچار تغییر در سیستم هیپوتالاموس به لپ‌نشین است و در پی تبار و بازنشانی می‌تواند در پرچم کانترل زن‌کننده کالری بی‌بی‌پی‌پی‌جا در سیستم ملکرکانترین هیپوتالاموس باشد. همچنین، تغییر مصرف غذا در کالری به م 필요یت می‌تواند به دلیل افزایش حساسیت مراکز تنظیم کننده اشتهای در هیپوتالاموس به لپ‌نشین با احتمال در سیستم ملکرکانترین هیپوتالاموس باشد. سیستم‌ها در نسبت پرچم به مصرف غذا در این زمرده می‌تواند به نویز کیک دیگری از عامل تاثیرگذار باشد.

سیمپتنیک و همکاران نشان داده که تعادل در نوع استیم‌های قلب غذای مادر بر روی رشد و تکامل زادگوی از جمله وزن و بدن آنها می‌گزارند. به طوری که درصد بالای اسیدهای قلبی اشعر در غذای مادر سیب کاهش رشد چنین و نوزاد تا 12 هفته در میانه‌های صحرایی شد.

هوراستا با تابعیت مطلوبی حاضر می‌باشد. به نظر می‌رسد در مطالعه حاضر، درصد بالاتر استیم‌های قلبی اشعر با معنی 0/03 درصد در غذای پرچم به کار رفته بود گونه HFC نسبت به غذای NC.

برخلاف نتایج تحقیق حاضر در مطالعه‌های دیگری، زادگوی مادران که در غذای مادری صحرایی ماده نوزاد ویستار مصرف کننده نوترز غذای پرچم کافی ندارند.
References

16. Jeong JY, Lee DH, Kang SS. Effects of Chronic Restraint Stress on Body Weight, Food Intake, and...

Original Article

The Effect of Maternal High-Fat Feeding on Energy Homeostasis in Stressed Adult Male Rat Offspring

Karbaschi R1, Zardooz H2

1Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran.

e-mail: homeira_zardooz@sbmu.ac.ir

Received: 10/02/2019 Accepted: 30/04/2019

Abstract

Introduction: In the present study the effect of chronic maternal high-fat diet consumption on energy homeostasis and glucose metabolism in response to chronic stress was investigated in adult male rats. Materials and Methods: Female rats were divided into two groups of normal and high fat diets. Each group received their diet from 3 weeks before pregnancy until the end of lactation. At 8 weeks of age, male offspring were divided into control and stress groups, the stress group receiving variable stress for 2 weeks. At the end of 10 weeks, plasma concentrations of glucose, insulin, corticosterone and leptin were measured and intra-abdominal fat was weighed in all male offspring. The body weight, food and calorie intake of the rats were also measured. Results: Maternal high-fat diet alone reduced intra-abdominal fat weight, plasma concentrations of corticosterone and leptin, body weight, food and calorie intake, although at had no effect on fasting plasma glucose and insulin concentrations, or on HOMA-IR index. In response to stress, the maternal high-fat diet reduced corticosterone and leptin plasma concentrations, body weight, food and calorie intake compared to the control group; whereas did not significantly change the intra-abdominal fat weight, plasma glucose and insulin levels as well as HOMA-IR index. Conclusion: From the results of the present study it seems we can conclude that maternal HFD feeding, in a critical developmental period (perinatal), by altering responsiveness of hypothalamic-pituitary-adrenal axis and/or central leptin sensitivity, exacerbates impaired energy homeostasis in stressed adult offspring.

Keywords: Maternal high-fat diet, Energy homeostasis, Stress, Offspring