چکیده
مقیم‌ها در مطالعه حاضر اثر مصرف مرن زریم غذایی پرچرب مادر بر هومونوژنان اثری و متعددی نگرفتند. تحقیقات گزارش شده نشان می‌دهند که مصرف غذایی باعث کاهش قند خون مادر می‌شود. در این مطالعه، میزان قند خون و وزن بدن مادر در جلسه شرقی نشان داد. در حضور استرس، غذا پرچرب مادر غذایی پلاسمایی کوتکوریسپرس و لیپین و همچنین وزن بدن میزان مصرف غذا و درایافت کالری را کاهش داده، در حالی که غذای پلاسمایی گلوکز، اسپرین و شاخص HOMA-IR افزایش پیدا کرد. بنابراین، نتایج این مطالعه نشان می‌دهد که مصرف غذای پرچرب مادر در دوران بارداری و ایجاد تغییرات سلولی نیازمند تغییر در ترکیب غذایی است که با توجه به شبیه‌پناه کودک به مادر نیازمند به تغییرات منجر به بررسی اختلالات متابولیسم غذایی می‌شود. این نتایج نشان می‌دهد که مصرف غذایی مربوط به واکنش بارداری و راهجات مادر و کودک می‌باشد.

واژگان کلیدی: رژیم غذایی پرچرب مادر، هومونوژنان اثری، استرس، زاده‌ها

مقدمه
تغییرات محیطی پیش از تولد و پس از آن می‌تواند مسبب تکاملی سبب‌سازنده مختلف بدن را نشان دهد که منجر به تغییرات اختلالات متابولیسم در آینده شود. مصرف غذایی غذایی از جنبه بي‌کی از مهم‌ترین عوامل ایجادکننده تغییر در ترکیب غذایی و تغییرات محیطی است که با توجه به شبیه‌پناه کودک به مادر نیازمند به تغییرات می‌باشد. همچنین بدلیل مواجهه جنین با ماده غذایی پیش از حضور می‌تواند موجب تغییرات اختلالات متابولیسم در سوی مادر، می‌تواند زمینه‌ساز بررسی این موضوعات می‌باشد.
مواد و روش‌ها

تعداد ۲۰ سر موس پرچربی ماده نژاد ویستار به‌طور تصادفی به دو گروه مصرف‌کننده غذای عضوی (N) و پرچرب متقیم شدند. حیوانات هر گروه در دوره‌های پیش از بارداری (۴ هفته)، بارداری و شیردهی از رژیم غذایی مربوط به خود اضافه نشدند. غذای معمولی (آب) استاندارد، تولید شده توسط شرکت پارس، ایران) حاوی ۲۰ گرم روش دانه‌های سویا در هر گرم (درصد کلوئیدی آنزیم از چربی) بود. غذای پرچرب حاوی ۱۵ درصد وزنی پلت استاندارد مخلوط شده با ۲۵ درصد وزنی کرم حیوانی (۸/۲ درصد کلوئیدی آنزیم از چربی) بود.

در جدول ۱ استایلی استراتژی پرچربی غذایی معمولی و پرچربی نشان داده شده است. در این مطالعه تماس حیوانات به طور آزاد با آب و غذا دسترسی‌شاندند و در دمای کنترل شده (۲±۳ درجه سانتی‌گراد) خوابند. رژیم غذایی کنترلی در این تحقیق مربوط به تغذیه و مراتب یکسان از زاده‌ها یا پایان شیردهی، تعیین زاده‌ها به باور عوامل ۸ و ۸ پاره یا مادر تغییر نمی‌کرد. در این مطالعه مکان‌ها به مرحله‌ای که پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک فروتنیون مادر و نوزاد نیز مطالعه می‌شود. پاسخ محور HPA با همکاری موهایی بررسی شدند. در این مطالعه اثر رژیم غذایی پرچربی مادر بر فعالیت‌های متابولیک F.
جدول ۱- ترکیب استهدای جری غذای معولی و برچرب به کار رفته

<table>
<thead>
<tr>
<th>فقره</th>
<th>نوع اصلی</th>
<th>نام مداوی</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوکریک اسید</td>
<td>C12:0</td>
<td></td>
</tr>
<tr>
<td>میریسیک اسید</td>
<td>C14:0</td>
<td></td>
</tr>
<tr>
<td>پالپینیک اسید</td>
<td>C16:0</td>
<td></td>
</tr>
<tr>
<td>پالپینولکسیک اسید</td>
<td>C16:1c n-7</td>
<td></td>
</tr>
<tr>
<td>مارکارک اسید</td>
<td>C17:0</td>
<td></td>
</tr>
<tr>
<td>استریک اسید</td>
<td>C18:0</td>
<td></td>
</tr>
<tr>
<td>اونتیک اسید</td>
<td>C18:1c n-9</td>
<td></td>
</tr>
<tr>
<td>لیتولیک اسید</td>
<td>C18:2c n-6</td>
<td></td>
</tr>
<tr>
<td>کاکا لیتولیک اسید</td>
<td>C18:3c n-6</td>
<td></td>
</tr>
<tr>
<td>آرساناتوریک اسید</td>
<td>C20:0</td>
<td></td>
</tr>
<tr>
<td>پالپینیک اسید</td>
<td>C20:1c n-7</td>
<td></td>
</tr>
<tr>
<td>بیوتک اسید</td>
<td>C22:0</td>
<td></td>
</tr>
<tr>
<td>لیکوسرک اسید</td>
<td>C24:0</td>
<td></td>
</tr>
<tr>
<td>سابر</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

اندازه‌گیری وزن دنی و میزان مصرف غذا

از زمان تولد تا پایان آزمایش، وزن دنی و میزان غذای مصرفی و کالری دریافتی حیوانات مورد مطالعه، مفهوم‌های زاینی با توزیع تصادفی در جای انتخاب شد. بنابراین اندازه‌گیری میزان غذای مصرفی ۱۲ ساعت پس از قرار دادن میزان ویژه‌ای از غذا در قفس. تفاوت میزان غذای براقانه داده در هر ۵ قفس از میزان غذای داده در انتخاب گاشته شده محاسبه و بر تعداد حیوانات هر قفس قسمی شد و میزان غذای دریافتی رویه هر حیوان به دست آمد. همچنین، از حاصل ضریب وزن غذای مصرف شده توسط هر حیوان در انرژی موجود در هر ۵ قفس غذای مصرفی، مکالماتی کالری دریافتی رویه (بر حسب کیلوکالری) تغییر محاسبه گردید.

برونکلی استرس

در پایان ۸ هفته به دست دو هزه زاده‌ها نر در دو گروه NE و HFS، در معرض استرس قرار گرفتند. به منظور تجزیه‌بندی از سازش حیوانات با استرس به کار برده شد. از عوامل استرس‌زا معیار بیش زیر و در روزها و زمان‌های مختلف طبق جدول ۲ استفاده شد:

i- Plexiglas
ii- Stimulator
iii- Overcrowding stress
محاسبات آماری

اطلاعات به صورت میانگین رخافته می‌باشد. SPSS از تحلیل‌های آماری IBM SPSS بهره‌مند است و نتایج آن از آزمون کولموگروف اسمیرنوف، نرمال بودن توزیع داده‌ها را نشان داد. در مقایسه ریزی‌ها مختلف فاکتورهای 2-way ANOVA در نظر گرفته می‌باشد. خود الگوریتم یا استرس می‌باشد. روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع روند استرس قطعه داده‌ها در نظر گرفته شده است و تا موارد 50%هسع رRON

<table>
<thead>
<tr>
<th>جدول 2- برنامه استرس متغیر</th>
<th>زمان استرس</th>
<th>نوع استرس</th>
<th>شماره استرس</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>1</td>
<td>شماره استرس</td>
<td>1</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>2</td>
<td>شماره استرس</td>
<td>2</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>3</td>
<td>شماره استرس</td>
<td>3</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>4</td>
<td>شماره استرس</td>
<td>4</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>5</td>
<td>شماره استرس</td>
<td>5</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>6</td>
<td>شماره استرس</td>
<td>6</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>7</td>
<td>شماره استرس</td>
<td>7</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>8</td>
<td>شماره استرس</td>
<td>8</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>9</td>
<td>شماره استرس</td>
<td>9</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>10</td>
<td>شماره استرس</td>
<td>10</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>11</td>
<td>شماره استرس</td>
<td>11</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>12</td>
<td>شماره استرس</td>
<td>12</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>13</td>
<td>شماره استرس</td>
<td>13</td>
</tr>
<tr>
<td>متوسط اسکریپتوگرافی</td>
<td>14</td>
<td>شماره استرس</td>
<td>14</td>
</tr>
</tbody>
</table>

نویسنده: CUSABIO

گروه‌هایی از اندام‌دارهای فاکتورهای پلاسمابی

خون‌گیری در زاده‌ها در پایان دوره آزمایش (100)

فناوری در شناسایی و به روش خون‌گیری از دم

دبی‌بان به غیر از تریک داخل صفحه سپید پنربازیتال

(10 میلی‌گرم بر کیلوگرم) انجام شد. خون در میکروتیوب

(5000 IU/ml) میکروئیر به ازای 1

میلی‌لیتر خون) جمع آوری و با سرعت 3000 دور در دقیقه

به مدت 10 دقیقه سانتی‌فایزش شد. سپس پاسخ‌های آن جدا

شبه و فرژرد. 80- درجه سانتی‌گراد متناقل گردید.

گلوکز پلاسمای روش گلوکسرکسید (حاصل حساسیت

5 میلی‌گرم بر کیلوگرم) با ضریب تغییرات درون آزمونی

8/20 درصد (شماره پارس آزمون، ایران) انسولین پلاسمای

(انسان) از نتیجه‌گیری می‌رسد. میکروئیر بر لیتر و با ضریب تغییرات

ترکیبی 0.5 میکروئیر بر لیتر و با ضریب تغییرات

Merckodia درون آزمونی (2/25 درصد) (شماره

Korotkover سنتورون پلاسمای به مواد جدید کریت

 Curtismas (حاصل حساسیت 1/21 نانومول بر لیتر

با ضریب تغییرات درون آزمونی 1/27 درصد و ضریب

LABORATORIES (شرکت

Dr G. آلمان) و لیته پلاسمای با استفاده از کریت ایرانی به میکروئیر

محاسباتی (حاصل حساسیت 0/87 نانومول بر لیتر

با ضریب تغییرات درون آزمونی 0/71 درصد) (شماره

چین) اندازه‌گیری شدند. CUSABIO

1-Statistical Package for the Social Sciences.
نماد (نمودار ۱-ب-ج): در حالتی که در گروه NC بود و پس از آن در گروه NS به گروه HFS افزایش داده شد (نمودار ۱-ب-ج) میزان مصرف غذا و دریافت کالری در گروه NS در روزهای ۵۵ و ۲۳ نسبت به گروه NC کاهش معنی‌داری نشان داد (P<0.۰۵ و نسبت به گروه HFS نیز فقط در روز ۵۶ (P<0.۰۵، کمتر بود (نمودار ۱-ب-ج).

الک

زمان (روز)

نمودار ۱-د-ب-ج: در حالتی که گروه NC بود و پس از آن در گروه NS به گروه HFS افزایش داده شد (نمودار ۱-د-ب-ج) میزان مصرف غذا و دریافت کالری در گروه NS در روزهای ۵۵ و ۲۳ نسبت به گروه NC کاهش معنی‌داری نشان داد (P<0.۰۵ و نسبت به گروه HFS نیز فقط در روز ۵۶ (P<0.۰۵، کمتر بود (نمودار ۱-ب-ج).

الک

زمان (روز)
نمودار ۱- اثر رژیم غذایی پرچرب مادر و استرس متغیر بر میزان تغییرات و سطح زیر منحنی و زن بدن (الف، د) میزان مصرف غذا (بر/۵ هفته) و دریافت کالری (ج، و) در زاده‌های نر بالغ

هر نقطه با ستون نشان میدهد. انتخاب معیار برای ۸ سر موش صحرا» است. NC: رابطه مادران مصرف‌کننده غذای مصنوعی که در دوره ی بلوغ، HFC: رابطه مادران مصرف‌کننده غذای پرچرب که در دوره ی بلوغ استرس دریافت کرده‌اند، NS: رابطه مادران مصرف‌کننده غذای پرچرب که در دوره ی بلوغ استرس دریافت نکرده‌اند، HFS: رابطه مادران مصرف‌کننده غذای مصنوعی که در دوره ی بلوغ استرس دریافت کرده‌اند. P<.05، P<.01، P<.001

i-Area Under the Curve
بحث
نتایج حاصل از این مطالعه نشان داد که در زاده‌های مادران مصرف‌کننده غذای پرچمیر در مقایسه با گروه‌های مادر و تغییر در ظرف‌درمان، و عدم خطر استرس، غلظت‌های کورتیکوستروئید و لیپین پلاسمای کاهش یافته، در حالی که تغییر معنی‌داری در غلظت‌های الکوکس و انسولین مشاهده نشد. مصرف رژیم غذایی پرچمیر مادر و استرس مریک به تغییرات سبب کرده که در زاده‌های مصرف‌کننده غذای پرچمیر مادر در مقایسه با گروه‌های مادران مصرف‌کننده غذای پرچمیر ایجاد شد. در زاده‌های مصرف‌کننده غذای پرچمیر، پرک، میزان مصرف غذا و دریافت کالری کاهش یافته که این کاهش در حضور استرس دوره ملایم نسبت به گروه شباه می‌تواند بود.

اثر رژیم غذایی پرچمیر مادر و استرس بر غلظت‌های پلاسمایی کورتیکوستروئید و لیپین و وزن جنیشکی در زاده‌ها

ارث رژیم غذایی پرچمیر مادر و استرس بر غلظت‌های پلاسمایی کلروک و انسولین و شاخص HOMA-IR در Zاده‌ها

جدول 3- اثر رژیم غذایی پرچمیر مادر و استرس متغیر (بر پایه‌کسالی) بر غلظت ناشی‌گون پارامترهای پلاسمایی وزن جنیشکی و شاخص HOMA-IR

<table>
<thead>
<tr>
<th>شاخص غذایی</th>
<th>کورتیکوسترون (میکروم (میلی‌میلی‌متر/لیتر))</th>
<th>لیپین (میکروم (میلی‌متر/لیتر))</th>
<th>کلروک (میکروم (میلی‌متر/لیتر))</th>
<th>انسولین (میکروم (میلی‌متر/لیتر))</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMA-IR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هوملاکوکس</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>غلاف</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
کورتیکوسترونز در جون‌گذاران بر مصرف غذا، مصرف شیر و دریایی کالری در دوره‌های شیروخوارگی کم شده و وزن بدن زاده‌ها کاهش یافته‌است. از سوی دیگر، سلسله‌بزایی کورتیکوسترونز انتقال یافته به زاده‌ها می‌تواند تکامل سيستم ملونکترون هیپوتالاموس و میزان بیان ژن-پیش‌دهی محور اشتها (مانند گلکز) یا عوامل پی‌ایشته‌ای (مانند پروپیولدیامینوکلرین) را در هیپوتالاموس تغییر داده و در نتیجه با اختلال در سیگنال‌های هوموستاتیک انتزاعی در جای‌گاه مصرف غذا، کالری دریافتی و وزن‌گیری را در آن‌ها کاهش دهد. 10 مطالعات دیگر نیز نشان داده‌اند که زاده‌های مادران مصرف کننده غذا پرچم دچار تغییر در حسی‌سیستم هیپوتالاموس به لپین شده و در نتیجه ساز و کاری‌های مربوط به تقطیع در منطقه‌های نهار اخیر مید به 11 کی شاد عامل کاهش غلت‌فیل میزان سلسله‌بزایی محور غذای خاص ک به قدرت زاده‌های مادران غرو پرچم در مطالعه حاضر می‌تواند به دلیل افشاگر حساسیت مرکز تغییر‌کننده‌اشته‌ای در هیپوتالاموس به لپین ای یا اختلال در سیستم ملونکترون هیپوتالاموس باشد. 11 همچنین تغییر رژیم غذایی پرچم به معمولی در این زاده‌ها می‌تواند به عنوان یکی از عوامل تاثیرگذار باشد. 12

در مطالعه حاضر، مصرف غذا رژیم-هگر و پرچم مادران R-orexigenic ii -anorexigenic iii -Siemelink iv -cafeteria diet

- Sprague Dawley

v - Sprague Dawley
References

2. Purrell RH, Sun B, Pass LL, Power ML, Moran TH, Tamashiro KL. Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup inges-
16. Jeong JY, Lee DH, Kang SS. Effects of Chronic Restraint Stress on Body Weight, Food Intake, and...


Original Article

The Effect of Maternal High-Fat Feeding on Energy Homeostasis in Stressed Adult Male Rat Offspring

Karbaschi R1, Zardooz H2

1Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran.

e-mail: homeira_zardooz@sbum.ac.ir

Received: 10/02/2019 Accepted: 30/04/2019

Abstract

Introduction: In the present study the effect of chronic maternal high-fat diet consumption on energy homeostasis and glucose metabolism in response to chronic stress was investigated in adult male rats. Materials and Methods: Female rats were divided into two groups of normal and high fat diets. Each group received their diet from 3 weeks before pregnancy until the end of lactation. At 8 weeks of age, male offspring were divided into control and stress groups, the stress group receiving variable stress for 2 weeks. At the end of 10 weeks, plasma concentrations of glucose, insulin, corticosterone and leptin were measured and intra-abdominal fat was weighed in all male offspring. The body weight, food and calorie intake of the rats were also measured. Results: Maternal high-fat diet alone reduced intra-abdominal fat weight, plasma concentrations of corticosterone and leptin, body weight, food and calorie intake, although at had no effect on fasting plasma glucose and insulin concentrations, or on HOMA-IR index. In response to stress, the maternal high-fat diet reduced corticosterone and leptin plasma concentrations, body weight, food and calorie intake compared to the control group; whereas did not significantly change the intra-abdominal fat weight, plasma glucose and insulin levels as well as HOMA-IR index. Conclusion: From the results of the present study it seems we can conclude that maternal HFD feeding, in a critical developmental period (perinatal), by altering responsiveness of hypothalamic-pituitary-adrenal axis and/or central leptin sensitivity, exacerbates impaired energy homeostasis in stressed adult offspring.

Keywords: Maternal high-fat diet, Energy homeostasis, Stress, Offspring