نقش دهنده‌های اکسید نیتریک در درمان زخم در دیابت‌های شیرین

چکیده
مقدمه
زخم‌های مزمن در اندام‌های تحتانی (به ویژه پا) در بیماران دیابتی می‌شود. این امر به دلیل احلک تحرک و عملکرد اجتماعی شده و با علائم سلامت کیفر می‌باشد. با این حال، اثر عملکرد این ماده در زخمی‌پسپاری به ویژه در بیماران دیابتی به شمار می‌رود. با طول‌پرسی در حالت شدید، باید ساز و کار و پاتولوژی‌هایی که ممکن است با به‌کارگیری روند نیتریک در فراز بی‌سیبی می‌شوند، مورد بررسی قرار گیرند.

واژگان کلیدی: اکسید نیتریک، النیتریک، زخم، رنگ‌پای دیابتی، دیابت‌های شیرین

مقدمه
دیابت‌های شیرین یکی از رایج‌ترین اختلالات متابولیک در جهان است که به وسیله نقش در ترشح اکسید نیتریک و یا ترکیب‌هایی که در دو عامل عمده به وجود می‌آید. بیانگر کاهش می‌باشد در سال‌های اخیر این امر باعث وقوع عارضه اکسید نیتریک در زخمی‌پسپاری شده و حتی در زخمی‌پسپاری می‌باشد. با این حال، اکسید نیتریک در زخمی‌پسپاری به ویژه در بیماران دیابتی به شمار می‌رود. با طول‌پرسی در حالت شدید، باید ساز و کار و پاتولوژی‌هایی که ممکن است با به‌کارگیری روند نیتریک در فراز بی‌سیبی می‌شوند، مورد بررسی قرار گیرند.

درمان دیابت‌های شیرین

- International diabetes federation
دیابت شیرین منجر به اختلال در عملکرد سلول‌های انوترونیل و کاهش توانایی اکسید نیتریک (NO) نورپپاتی دیابتی، بیماری‌های عروقی محسوس و عوامل اصلی دیابتی از نظر ادامه می‌بیند. با این حال، در کم‌تابال‌ها، کاهش توانایی NO موجب می‌شود که از این عوامل دارای درستی در دیابتی شود. این شاخص به عنوان یکی از مدل‌هایی که در انتقال زخم از این عوامل در پایان فازهای سرخ‌پزشکی بکار می‌رود، گزارش‌هایی که از این علمی مطالعات در آن است. اگرچه بیماری‌های عروقی محسوس و عوامل اصلی دیابتی به عنوان یکی از این عوامل در پایان فازهای سرخ‌پزشکی بکار می‌رود.

Downloaded from ijem.sbmu.ac.ir at 20:18 +0330 on Sunday January 19th 2020

iii - Platelet-derived growth factor
iv - Transforming growth factor-β
v - Tumor necrosis factor-α
vi - Prostaglandin E2
vii - Epidermal growth factor
viii - Vascular endothelial cell growth factor
ix - Matrix metalloproteinases
x - Tissue inhibitor of metalloproteinases

i - Nitric oxide
ii - Diabetic Foot Ulcer
به مدت زمانی که افکار خاصی می‌کند، سلول را فراهم کد که باعث تسریع سیگنال ترانسانسکشن‌د رخ می‌شود.

در مرحله بارزسازی، بافت گرانول دوباره شکل می‌گیرد و اسکار (جای زخم) تشكل می‌شود. توده زخم حاوی سلول‌های کمی است و عمداً از کلاژن و دیگر پروتئن‌های خارج سلولی تشکل شده است. این مرحله چند ساعت تا چند روز به طول می‌انجامد.

زخم حاد زخمی است که طی یک سری روند‌های منظم و به موقع بازسازی سی‌شود و یک‌پیروانه‌های آنتی‌تی‌وی و عملکردی اندام برقرار می‌شود. ۱۰ توصیف تورما، سوختگی و جراحی حاد ممکن است تنها باعث ایجاد زخم‌های حاد می‌شود.

جدول ۱- اخلالات ایجاد شده در مراحل مختلف التئام زخم دیابتی

<table>
<thead>
<tr>
<th>مرحله بارزسازی</th>
<th>مرحله هومناست و التئاب</th>
</tr>
</thead>
<tbody>
<tr>
<td>تجزیه پروتئین‌های ماتریکس خارج سلولی</td>
<td>تجمع سلول‌های التئابی</td>
</tr>
<tr>
<td>ضخامت اسکار</td>
<td>هماهنگ سلولی</td>
</tr>
<tr>
<td>تغییر سطح</td>
<td>(TGF-β, VEGF)</td>
</tr>
<tr>
<td>خفیفتی</td>
<td>فاکتورهای رشد (VEGF, PDGF, TGF-β1)</td>
</tr>
<tr>
<td>اکسپرسیون</td>
<td>پاسخ به فاکتورهای رشد</td>
</tr>
<tr>
<td>رگولاسیون</td>
<td>(IL-6, TNF-α)</td>
</tr>
<tr>
<td>زمان مرحله بیش از دو روز</td>
<td>زمان سلول خارج سلولی (کلاژن I و III)</td>
</tr>
<tr>
<td>فنولیکلین</td>
<td>بیان ماتریکس خارج سلولی</td>
</tr>
<tr>
<td>ساختان پی‌ال‌کا مجدد</td>
<td>MMPs ↑</td>
</tr>
<tr>
<td>TIMPs ↓</td>
<td></td>
</tr>
</tbody>
</table>

آنتی‌ژن‌ها، غیر آنتی‌ژن‌ها و یا توسط باکتری‌های سطح پوست صورت می‌گیرد.

اکسید نیتریک در پوست

اکسید نیتریک در پوست

آنتی‌ژن‌ها، غیر آنتی‌ژن‌ها و یا توسط باکتری‌های سطح

این روش رابطه‌های پوستی و تکثیر می‌کند که فاکتورهای مختلف می‌توانند تأثیرگذار بر تغییرات تازه‌سازی و ترکیب‌سازی سلول‌های پوستی باشند.

فرآیندهای فعالیت فنولیکلین، واکنش‌های ایمنی و التئاب پوستی تا به طور معمول ادامه می‌دهند.

۱۰ تولید ملانین، پس از تماس با اوش‌های فرابنفش، (UV) و چراغ‌های آینه‌بز ناشی از این نوع می‌کند.

۱۸ تولید NO در پوست توسط سیگنال‌ها.
Nitric oxide synthase
1. -Endothelial nitric oxide synthase
2. -Inducible nitric oxide synthase
3. -Neuronal nitric oxide synthase
4. -S-nitrosothiols
5. -GS

vi -Thiyl radicals
vii -Thiolates
نقطه ی باکتری‌های سطح پوست در تولید NO

باکتری‌های اکسید کننده آمونیا (AOB) گروهی از میکروگانیسم‌های سطح پوست پستانداران هستند که در چرخه نیتروژن در پوست نقش دارند. این نیتروژن از آمونیاک آزاد از عرق می‌شود (شکل ٣). پسین نیتروژن تحت شرایط اسیدی پوست (pH حداکثر ١٦) به NO تبدیل می‌شود (شکل ٣). در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که می‌توان به شکل در پوست در خاک نیتروژن اکسید کننده (AOB) نیتروژن اکسید کننده (AOB) می‌باشد. در این پروتکس، اکسیژن به عنوان مخزن NO می‌باشد. در رابطه با NO می‌توان نشان داد که M -Wound lysates
i -High voltage 365 nanometer
ii -Ammonia oxidizing bacteria
شناخته شده‌ترین شرايط زخم مزمن است.

| شناسه | جدول 2 - میزان NOx و نتیجه در نمونه‌های زخم بر حسب زمان اندام‌گیری در برخی حیوانات آزمایشگاهی سالم و دیابت نوع
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میزان اندازه‌گیری</td>
<td>نتیجه</td>
</tr>
<tr>
<td></td>
<td>(روز بعد از ابتلا)</td>
<td>زخم</td>
<td>دیابت</td>
<td>زخم</td>
<td>دیابت</td>
<td>زخم</td>
<td>دیابت</td>
<td>زخم</td>
<td>دیابت</td>
<td>زخم</td>
<td>دیابت</td>
<td>زخم</td>
</tr>
<tr>
<td>42</td>
<td>110 میکرومول در لیتر</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
</tr>
<tr>
<td>43</td>
<td>60 میکرومول در لیتر</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
</tr>
<tr>
<td>44</td>
<td>1/4 میکرومول در لیتر</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
</tr>
<tr>
<td>45</td>
<td>2/4 میکرومول در لیتر</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
</tr>
<tr>
<td>46</td>
<td>1/4 میکرومول در لیتر</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
</tr>
<tr>
<td>47</td>
<td>1/4 میکرومول در لیتر</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>112</td>
</tr>
</tbody>
</table>

افزایش عفّلی آزمایش در بافت زخم دیابتی (db/db) با تبدیل -آزروژین به -L-آزروژین و اوره، باعث کاهش آزمایش عفّلی و کاهش فراهمی NO را کاهش می‌دهد (شکل 3). براساس یک مطالعه‌ی موری -L-آزروژین چه در مدارهای حیوان و چه در بیماران، که محلول -آزروژین را در دهان فرآیند کرده‌اند باعث تسکین روده‌های زخم می‌شود. به نظر می‌رسد اخلاق NO در دیابت و برآمدها و پیشگیری آن در گزینه است بله باعث توسعه اخلاقان ممکن و متابولیکی در تقویتی همی‌بافته‌ها از جمله پوست می‌گردد.

نتیجه NO در دیابت و زخم دیابتی

تقدام بالایی مزمن در بیماران دیابتی منجر به افراش گلابی و سیرگاهی که انسداد عروق و اثرات سلول‌های کارکنده و شکستن محصولات نهایی مصرف‌کننده گلیکوژن‌ها (EGS) می‌شود که منجر به استرتوسپورین (ROS) می‌شود. (ROS) آنزیم سیلیزاتورهای آنزیم سوپراسید (O2) باعث خسارت می‌شود. این موجودیت در زخم و در نهایت منجر به کاهش فراهم NO زیر است. در نمودار NO زیر مهم برای افزایش NO در دیابت می‌شود. فاکتور اصلی می‌باشد که در موش می‌شود. میزان سوپراسید و بهبود التیام دیابت در میزان سوپراسید و بهبود التیام دیابت در NO از طریق

i - Polyol
ii - Advanced glycation end products
iii - Reactive oxygen species
برای آنزیم‌های NOS و پیش‌ساز تولید NO می‌باشد.41 افزایش فعالیت آرزیاناز در پوست اطراف زخم موجب آنزیم‌های NO، آنزیم‌های آنزیم‌های آنزیم‌های آنزیم‌های آنزیم‌های نئوپاسیون كاناسند از طریق افزایش قدرت انقباضی زخم، باعث بهبود شیمی زخم در مدارهای دیابتی تجویز نوع یک می‌شود.17

روش‌های درمانی مختلف می‌توانند از طریق تنظیم بیان و فعالیت آنزیم‌های مختلف نOS به تسریع روند التام زخم کمک کنند. استفاده از امواج شوکی خارجی (ESVT) افزایش بیان VEGF و eNOS و گرایی و افزایش جریان خون ناحیه زخم دیابتی در حیوانات و انسان با دیابت نوع یک می‌شود.18 درمان با اکسیژن هیبریدیک (کسپر) با فشار بالاتر از یک اتمسفر با افزایش تولید NO از طریق افزایش فعالیت eNOS و افزایش سنتز كلارزن باعث بهبود افزایش قدرت انقباضی زخم زخم دیابتی می‌شود.19

اسکافر1 و همکارانش نشان دادند که تأخیر در روند التام زخم در موش‌های صحرایی دیابتی نوع یک، با کاهش سنتز NO و کاهش تجمع کلارزان وابسته به حضور NO همراه است.57 در موش‌های دیابتی نوع دو فاقد نOS، پروپیلاکسیون کرافتهایی به کار شده زخم کاهش و ظرفیت ایمپلیکسیون مجدد را تضعیف می‌کند.17 در موش-نOS بهبود فعالیت پیشنهاد شده است.7 مرور نOS بهبود فعالیت پیشنهاد شده است.9 این روند معکوس و باعث تولید مقادیر مفیدی ازv می‌شود.

نتایج 6- مهاجرتی از طریق مهاجرتی

برای تولید NO در محل زخم و در نتیجه کاربرد آن برای درمان زخم دیابتی از دو روش استفاده می‌شود: افزایش تولید NO از طریق مهاجرتی. به این ترتیب NO از طریق مهاجرتی

-External shock wave therapy

-Schaffer
جدول ۳- اثرات تقویت سیستم NO (افراشی NO اندازه) بر الانتیام زخم در دیابت نوع یک

<table>
<thead>
<tr>
<th>معنی</th>
<th>افراشی الانتیام زخم از طریق</th>
<th>حاوی سلول های استریت‌ویتوسین (STZ) (میلی‌گرم به گرم)</th>
<th>حاوی آزمایشگاهی</th>
<th>جنس</th>
<th>تردید</th>
<th>نر</th>
<th>تردید</th>
</tr>
</thead>
<tbody>
<tr>
<td>زخم</td>
<td>تزریق (داخلی)</td>
<td>افزایش دو برابر میلی‌گرم به گرم سلول</td>
<td>۲۰</td>
<td>L-آرژینین</td>
<td>موس صحرایی داوالی</td>
<td>۶۰</td>
<td>موس صحرایی داوالی</td>
</tr>
<tr>
<td>زخم</td>
<td>تزریق (داخلی)</td>
<td>افزایش دو برابر میلی‌گرم به گرم سلول</td>
<td>۲۰</td>
<td>L-آرژینین</td>
<td>موس صحرایی داوالی</td>
<td>۶۰</td>
<td>موس صحرایی داوالی</td>
</tr>
<tr>
<td>سلول</td>
<td>تزریق (داخلی)</td>
<td>افزایش دو برابر میلی‌گرم به گرم سلول</td>
<td>۲۰</td>
<td>L-آرژینین</td>
<td>موس صحرایی داوالی</td>
<td>۶۰</td>
<td>موس صحرایی داوالی</td>
</tr>
</tbody>
</table>

ب) مصرف خوراک‌های پراواستاتین ۱ ۲ ۳

در این مطالعه، با توجه به اینکه تجویز هیدروکسی پرولین و CoA قادر به کاهش قدرت انقباضی زخم و افزایش باند eNOS در دیابت نوع یک است، می‌تواند در برابر مصارف خوراکی دیگر یکی از موارد که در دیابت نوع یک استفاده می‌شود.

نکته: هر یک از خوراک‌های دیگری که مانند Poly (vinyle alcohol) و PVA مصرف می‌شود، در مطالعات پیشین به عنوان یکی از موادی که می‌تواند به بهبود و تسریع انتیام زخم کمک کند، مورد بررسی قرار گرفته است.

جدول ۴- برخی از خوراک‌های پراواستاتین

<table>
<thead>
<tr>
<th>تاکید</th>
<th>نوپا</th>
<th>مکانیزم عمل خوراک‌های پراواستاتین</th>
<th>محدودیت</th>
<th>تأثیر</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>بردن NO</td>
<td>آکژورن</td>
<td>تقویت پیشنهاده به بهبود روند الانتیام زخم</td>
<td>محدود</td>
<td>کاهش</td>
<td>+</td>
</tr>
<tr>
<td>بردن NO</td>
<td>آکژورن</td>
<td>تقویت پیشنهاده به بهبود روند الانتیام زخم</td>
<td>محدود</td>
<td>کاهش</td>
<td>+</td>
</tr>
<tr>
<td>بردن NO</td>
<td>آکژورن</td>
<td>تقویت پیشنهاده به بهبود روند الانتیام زخم</td>
<td>محدود</td>
<td>کاهش</td>
<td>+</td>
</tr>
<tr>
<td>بردن NO</td>
<td>آکژورن</td>
<td>تقویت پیشنهاده به بهبود روند الانتیام زخم</td>
<td>محدود</td>
<td>کاهش</td>
<td>+</td>
</tr>
</tbody>
</table>

یافته‌های آزمایشگاهی: در این مطالعه، با توجه به اینکه بردن NO با توجه به تأثیرات آن بر روند الانتیام زخم، ممکن است بهبود قابل توجهی در روند الانتیام زخم دیابتی داشته باشد.

نکته: هر دو موارد بهبود روند الانتیام زخم دیابتی و تسریع انتیام زخم با کاربرد ضد خوراکی و تقویت سیستم NO ممکن است باعث بهبود سلامتی خونی و سیستم جلوگیری از پیشرفت ترکیبات میکروبی در دیابت و دیابت نوع یک شود.

i -Pravastatin
ii -Yang
iii -Lovastatin (Lov)-loaded tissue engineering scaffold (TES)
نتیجه‌گیری و آینده‌نکروی
کاهش سطح سرمی و پوسنی NO در دیابت، ناشی از افزایش سوپراکسیدها و افزایش فاکتورهای التهابی در افراد دیابتی از عوامل تأثیرگذار در تأمین روند ترکیب زخم دیابتی است. علی‌رغم شیوع بالاتری زخم پای دیابتی در بیماران دیابتی نیز، بیشتر مطالعات انجام شده‌هستند. اوجه بیشتر از دیابتی نیز NO در روز تولید زخم دیابتی در افراد دیابتی موثر بر زخم دیابتی است. قرار بگیرد، افزایش ساختارهای ماهیت سلولی کالر، افزایش قدرت انتقال از روند ایده‌آل و انتقال مواد مغذی به ناحیه زخم باعث تشکیل روند ترکیب زخم دیابتی می‌شود. تمام این افراد به طور بالقوه برای مدیریت زخم پای دیابتی اهمیت می‌دارند.

سپاسگزاری: این پژوهش به حمایت مالی پژوهشگاه علوم‌بُدیدوری و متالوپروپیل انجام شده است. نویسندگان اعلام می‌دارند که هیچگونه تضلیلی در پژوهش حاضر وجود ندارد.

جدول ۱- اثرات NO در محدوده NO در محل زخم از روی سه دیاژت افزایش تولید NO در محل زخم استفاده از بنادانهای حاوی نانونترپین‌های دهنده NO است که باعث افزایش التهاب زخم در دو هفت‌می‌گر می‌می‌شهند.

<table>
<thead>
<tr>
<th>اثرات</th>
<th>ناز خون</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>کمی NO بکر کردن</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اثرات فیزیولوژی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پاسخگ، این</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تولید NO در محل زخم</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیابت</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GSH: Glutathione, SOD: Superoxide dismutase, MDA: Malondialdehyde

<table>
<thead>
<tr>
<th>ویژگی</th>
<th>پوست</th>
<th>چربی</th>
<th>انسان</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تغذیه</td>
<td>پوست</td>
<td>چربی</td>
<td>انسان</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

Review Article

The Role of Nitric Oxide Donors in Wound Healing in Diabetes Mellitus

Afzali H1, Norouzirad R2, Khaksari M1, Ghasemi A2

1Department of Physiology and Pharmacology, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran, 2Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I. R. Iran.

e-mail: Ghasemi@endocrine.ac.ir

Received: 18/12/2018 Accepted: 01/06/2019

Abstract

Introduction: Diabetic foot ulcer is a serious complication of diabetes mellitus; it consists of lesions in the deep tissues associated with neurological disorders and peripheral vascular disease in the lower limbs. Delayed wound healing in diabetes leads to long-term hospitalization and even amputation of distal organs. Diabetes mellitus is associated with decreased nitric oxide bioavailability that causes dysfunction of the skin. Nitric oxide, a short-lived free radical, is produced in the skin, where it has important physiological functions. Much evidence suggests that nitric oxide accelerates wound healing. This review describes the pathways of nitric oxide production in the skin as well as role of nitric oxide donors in diabetic wound healing. Increased oxidative stress and arginase activity contribute to decreased nitric oxide bioavailability in diabetes. Based on data available, nitric oxide donors such as nitrite increase nitric oxide levels in the diabetic wound and improve wound healing. It seems that increased nitric oxide in diabetic patients improves wound healing by increased collagen deposition and keratinocytes proliferation in the wound edges there by increasing reepithelialization capacity, chemoattractant of cytokines, increased formation of small blood vessels and increased blood flow to the wound site. In conclusion, nitric oxide donors could be considered as a potential and cost-effective treatment for diabetic wounds.

Keywords: Nitric oxide, Wound healing, Diabetic foot ulcer, Diabetes mellitus