مقدمه

لپاروسکوپیک جراحی غدد درون بیز و متابولیسم ایران
داشتهای علم پزشکی و خدمات پیشگیری - دانشگاه شهید بهشتی
دوره کارشناسی ارشد ۱۳۹۷ - ۱۳۹۹ (۳ پیمگان - سپتامبر ۱۳۹۹)

تأیید جراحی لپاروسکوپیک بر روی پروتئینی خون افراد چاق با استفاده از شات گان پروتئینی

چکیده

مقدمه
در حال حاضر جراحی غدد درون بیز و متابولیسم ایران برای افراد چاق مقصر در نظر گرفته می‌شود. با پژوهش‌های جراحی غدد درون بیز نتایجی گرفته شده که افراد چاق با داشتن بیش از حد همبستگی بین وزن بدن و BMI باید در مصرف غذایی کاهش دهند.

Laparoscopic Gastric Plication (LGP) به عنوان یکی از روش‌های جراحی غدد درون بیز استفاده می‌شود. این روش با استفاده از سیستم جراحی غدد درون بیز توسط یک هواپیمای بدون سرنشین در جراحی غدد درون بیز استفاده می‌شود.

PVDF

پی‌اف‌اس-دی‌اف

روش LGP در جراحی غدد درون بیز مطالعه گرفته شده است. این روش با استفاده از یک هواپیمای بدون سرنشین در جراحی غدد درون بیز استفاده می‌شود.

واژگان کلیدی: پروتئینی، لپاروسکوپیک، جراحی چاقی، طیف سنجی جرمی

مقدمه

چاقی: گروهی از فردیانی که وزن بدنشان بیش از حد می‌باشد. به طور کلی، چاقی به دو کاندیداست: چاقی ناشی از خرسش و چاقی ناشی از مصرف غذایی غیر مطلوب.

Laparoscopic Gastric Plication (LGP)

در حال حاضر، چاقی ناشی از مصرف غذایی غیر مطلوب می‌باشد. این روش با استفاده از یک هواپیمای بدون سرنشین در جراحی غدد درون بیز استفاده می‌شود.

i- Body composition

یک چکیده

Laparoscopic Gastric Plication (LGP) (plication æ å'e* ÒÇ 56G7 f.< Z!8Çϐ7 äæ'7 ;" دیپت، بکر: یک نگاه به تاثیر قابل ملاحظه جراحی غدد درون بیز بر روی مصرف غذایی غیر مطلوب)

Laparoscopic gastric plication (LGP) is a surgical procedure that involves the use of a laparoscopic instrument to create a pouch in the stomach. This procedure is commonly used to treat obesity and is considered a more minimally invasive alternative to traditional open surgery. LGP is performed by inserting a laparoscopic instrument through small incisions in the abdomen, which allows the surgeon to visualize and manipulate the stomach. The instrument is then used to create a pouch in the stomach, which is intended to reduce the amount of food that can be consumed at one time, thereby helping to control appetite.

The procedure is typically performed under general anesthesia and requires an experienced surgeon. However, the recovery time is shorter than with traditional open surgery, and patients are usually able to return to normal activities within a few days.

Laparoscopic gastric plication (LGP) is a surgical procedure that involves the use of a laparoscopic instrument to create a pouch in the stomach. This procedure is commonly used to treat obesity and is considered a more minimally invasive alternative to traditional open surgery. LGP is performed by inserting a laparoscopic instrument through small incisions in the abdomen, which allows the surgeon to visualize and manipulate the stomach. The instrument is then used to create a pouch in the stomach, which is intended to reduce the amount of food that can be consumed at one time, thereby helping to control appetite.

The procedure is typically performed under general anesthesia and requires an experienced surgeon. However, the recovery time is shorter than with traditional open surgery, and patients are usually able to return to normal activities within a few days.
Gastric Plication

Gastric Plication

اين مثالين از نوع مشارکت‌های آینده‌نگری بوده و روی

BMI

بیمار میتال به چاقی مغز که تحت عمل جراحی گلپ کانتینر و

Dr. Roux-en-Y

برای تمرین هماتیک و علات شدیدی که تحت عمل جراحی گلپ کانتینر و

- Prospective observational

- Shotgun proteomics
کرنیات انجام شد. هیدربز پروپتین‌ها و تبدیل آن‌ها به پیتید
با اضافه کردن 100 میکرولیتر بافر هضم کننده به هر چاهک
صورت گرفت. این محلول شامل 5 درصد استاتیترولیت، 5
درصد تری فلوتوترواناتول و نسبت 100 نانومول تری‌سیسین به
(Sequencing-grade, Promega, Madison, WI) مونه در
50 میلی‌مولار تری‌آمینوآمینو بی‌کمیات است. پیتید به
متده معلامیت در دمای 27 درجه سانتی‌گراد در انوکتکور
مرطوب شده قرار گرفت و پس از آن با پالی‌نای بی‌پات هضم
کننده خارج شد. در ادامه، پیتیدها توسط 150 توکوپولیتر
محصول 4 درصد استاتیترولیت و 61 درصد فرمیک اسید به
مرتبه شسته شدند و در پالت جدید جمع آوری گردیدند. پس
از خشک کردن پیتید در سانترفیوز تحت خلاء، در دمای
-80 درجه سانتی‌گراد تا زمان آلالاژ‌گیری شد.

آلبالیز بی‌پایه‌ی، محققان، استفاده از سیستم
(LC-MS/MS) کرومآتوگرافی-استرکتروماتوری چری
پیش از آلبالیز توسط دستگاه طیف سنج جرمی، پیتیدها
در محلول 2 درصد استاتیترولیت و 61 درصد فرمیک اسید و
61 درصد تری فلوتوترواناتول محصول 4 درصد استاتیترولیت و 61 درصد
فرمیک اسید به سیستم UPLC-nanoESI MS/MS دستگاه
مدل شدند. آماری اغلب سیستم (Thermo Scientific) NanoRSCL
PicoTip 360 رصد است. سیستم به صورت آلالاژ توسط
20-20-10 امیتر جوتینویسیون نانوسیری به دست‌دات
(Thermo Scientific) Q Exactive HF طیف‌سنج جرمی
آماری) منحل بود. نمونه‌ها در یک ترتیب تصادفی و با سه
پای تکرار به دستگاه تزریق شدند. در هر تزریق، 1 میکروگرم
از نمونه پیتیدی که توسط دستگاه نانوداراپ در طول موج
20-20-10 امیتر تعیین گل‌بندی گردید به سرویس 2 سانتی-
متتر (Dionex Acclaim PepMap RSLC C18) تزریق
کردند. شده و سپس جدا‌سازی پیتیدها با سرویس 25 سانتی-
متتر انجام (Dionex Acclaim PepMap RSLC C18) C18
گرفت. لازم به ذکر است، هر دستگاه در دمای
30 گراد در دمای
A و 60 گراد در دمای
B درصد فرمیک اسید و 61 درصد خال
(1/1 درصد استاتیترولیت) سیر در دستگاه
فیلم راه‌های استاتیترولیتی بسیار شدید. پایای شیپ سریگری
راه دارای گرادینگ با 98 درصد در حال
(1/1 درصد استاتیترولیت) و 61 درصد خال
درصد فرمیک اسید و 61 درصد خال
درصد استاتیترولیتی

iv -Positive mode
Gastric Plication

Ingenuity Pathway Analysis (IPA)

- Resolution
- False discovery rate (FDR)
- Label-free quantification
- Unique peptides
- Normalization of mass intensity
- Alignment of retention time
- Permutation-based FDR

Top 15 data dependent ms/ms

Gastric Plication

Full ms scan in 275 ± 375 m/z

Gastric Plication

β-Adrenoceptors and G-Protein-Coupled Receptors

β2-Adrenoceptors regulate FGF21 expression in response to 1500 mEq/L

Downloaded from ijem.sbmu.ac.ir at 8:35 +0430 on Friday August 9th 2019
جدول 1- مشخصات افراد شرکت‌کننده در مطالعه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>پس از عمل جراحی N=1016</th>
<th>قبل از عمل جراحی N=599</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>33/681/9</td>
<td>37/681/9</td>
</tr>
<tr>
<td>كاهش اضطراب ون (درصد)</td>
<td>16/18</td>
<td>13/18</td>
</tr>
<tr>
<td>ترکیب‌سازی</td>
<td>72/222/22</td>
<td>73/222/22</td>
</tr>
<tr>
<td>(پیشگیری) (پیشگیری)</td>
<td>66/7/15</td>
<td>67/7/15</td>
</tr>
<tr>
<td>کلولکم بر متر مربع</td>
<td>44/7/18/28</td>
<td>43/7/18/28</td>
</tr>
<tr>
<td>جنسیت (مرد: زن)</td>
<td>17/14/14/14</td>
<td>19/14/14/14</td>
</tr>
</tbody>
</table>

BMI= Body Mass Index, HDL-C= High Density Lipoprotein Cholesterol, LDL-C= Low Density Lipoprotein Cholesterol

الف

نمودار 1- نمایش تغییرات برونتنیهای اندام‌هایی که در گروه اصلی مطالعه از عمل جراحی پس از عمل (T1) بیش از حد می‌باشند. (Log2 مقایسه T1 با T2)

ب

نمودار 2- نمایش تغییرات برونتنیهای اندام‌هایی که در گروه اصلی مطالعه از عمل جراحی پس از عمل (T1) بیش از حد می‌باشند. (Log2 مقایسه T1 با T2)
همانطور که در نمودار 1-الف مشاهده شد، از میان پروتئین‌های تغییر یافته در 12 پروتئین افزایش مقدار و 12 پروتئین کاهش مقدار نشان دادند. در 17 پروتئین، افزایش مقدار و 1 پروتئین کاهش مقدار شناسایی شد.

پذیرش p-نمایی بر روش محور آیکس نشان داده شده است. هر نقطه یک پروتئین را نشان می‌دهد و نقاط قرمز نرگ، عارضه پروتئین‌های هستند که تغییرات معنادار (p<0.05) تعیین شده‌اند. پروتئین-هایی که افزایش تغییرات بیان مثبت دارند، پس از عمل جراحی مقدارشان افزایش یافته و آنها که افزایش تغییرات بیان منفی دارند، پس از عمل جراحی مقدارشان کاهش یافته است.

جدول 2- پروتئین‌های شناسایی‌شده با تغییرات معنادار (p<0.05) تعیین شده‌اند. پس از عمل جراحی نسبت به پیش از عمل

| شناسایی پروتئین | نام پروتئین | نام زن | -Log10(p) تعیین شده | اندازه تغییرات بین پروتئین‌های بعد عمل Nسبت به قبل عمل در مقياس 1 | *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q06053</td>
<td>Inter-alpha-trypsin inhibitor heavy chain H3</td>
<td>ITIH3</td>
<td>4.18</td>
<td>0.02</td>
<td>1/18</td>
</tr>
<tr>
<td>P35542</td>
<td>Serum amyloid A-4 protein</td>
<td>SAA4</td>
<td>1.66</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P01861</td>
<td>Ig gamma-4 chain C region</td>
<td>IGH4</td>
<td>1.41</td>
<td>0.02</td>
<td>1/18</td>
</tr>
<tr>
<td>P05990</td>
<td>Apolipoprotein D</td>
<td>APOD</td>
<td>2.47</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P05116</td>
<td>Complement factor I</td>
<td>CFI</td>
<td>4.80</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>Q16505</td>
<td>Fetuin-B</td>
<td>FETUB</td>
<td>1.61</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P04278</td>
<td>Sex hormone-binding globulin</td>
<td>SHBG</td>
<td>3.11</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>Q95445</td>
<td>Apolipoprotein M</td>
<td>APOM</td>
<td>1.66</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P00738</td>
<td>Hagemoglobin</td>
<td>HP</td>
<td>1.66</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P01011</td>
<td>Alpha-1-antichymotrypsin</td>
<td>SERPINA3</td>
<td>3.09</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P01023</td>
<td>Alpha-2-macroglobulin</td>
<td>A2M</td>
<td>2.84</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P02730</td>
<td>Serum amyloid P-component</td>
<td>APoS</td>
<td>1.51</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P02753</td>
<td>Leucine-rich alpha-2-glycoprotein</td>
<td>LRG4</td>
<td>1.76</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P02606</td>
<td>Transferrin</td>
<td>TF</td>
<td>1.10</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P05180</td>
<td>Crongulation factor Xlll B chain</td>
<td>F1B</td>
<td>0.87</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P19852</td>
<td>Alpha-1-acid glycoprotein 2</td>
<td>ORM2</td>
<td>8.18</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P19823</td>
<td>Inter-alpha-trypsin inhibitor heavy chain H2</td>
<td>ITIH2</td>
<td>3.37</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P19824</td>
<td>Inter-alpha-trypsin inhibitor heavy chain H1</td>
<td>ITIH1</td>
<td>4.17</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P02744</td>
<td>Pregnancy zone protein</td>
<td>PZP</td>
<td>1.66</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P27918</td>
<td>Properdin</td>
<td>CFP</td>
<td>1.66</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>P81018</td>
<td>Phosphatidylinositolysergic-specific phospholipase D</td>
<td>GPPLD1</td>
<td>3.41</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>Q13790</td>
<td>Apolipoprotein F</td>
<td>APOF</td>
<td>3.23</td>
<td>0.01</td>
<td>1/18</td>
</tr>
<tr>
<td>Q96935</td>
<td>N-acetylglucosaminyl 1-4 linked asparagine</td>
<td>POLYR2</td>
<td>3.72</td>
<td>0.01</td>
<td>1/18</td>
</tr>
</tbody>
</table>

جهان روز ماه ماد تهیه یا جراحی (77) نسبت به قبل از عمل جراحی
در هر دو زمان پس از عمل جراحی، دو شیبکه برهمکنشی برای پروتئین هایی که تغییرات معنادار داشتند، توسط نرم‌افزار IPA شناسایی گردید. اولین شیبکه پیشنهادی که

شکل ۱- اولین شیبکه برهمکنشی پروتئین‌های شناسایی شده در الگ (الف) مقایسه نمونه‌های پیش از عمل با پس از دو ماه پس از عمل (T1) و نمونه‌های پیش از عمل با چهار تا پنج ماه پس از عمل (T2)
پروتئن‌های تغییر یافته وجود دارند، اما از لحاظ آماری تغییرات معنادار نداشته‌اند. نوآوری بر این تغییرات با استفاده از ترفندهای پیشنهادی از سوی IPA داشته باشیم. ارتباط با پروتئن‌های تغییر یافته توسط IPA نشان داده شده است. عملکرد رئیسی اختصاص یافته به این مجموعه از پروتئن‌ها و سایر اطلاعات مربوط به شیکه‌ها در جدول 3 آورده شده است.

<table>
<thead>
<tr>
<th>شیکه</th>
<th>محتمل ترین عملکرد زیستی و بیماری مرطیب</th>
<th>پروتئن‌های موجود</th>
<th>تغییر مقدار در شیکه</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>سیستروی سیگنالینگ سلولی و برهمکنش با سایر پروتئن‌ها، تروموژ و عملکرد سیستم میانولوزی سیستم ایمنی.</td>
<td>37</td>
<td>A1R1B1, AMBP, APOA1, APOD, APOF, C3, C3-Cfb, CFI, CFP, CLDN4, Complement component1, CYCS, estrone, F13B, Fcg2, FETUB, Fibrinogen, glycosylphosphatidylinositol, GPLD1, IgG, IgG4 lambda, IGH4G, IL6, Irf, ITIH1, ITIH2, ITIH3, ITIH4, LG1, PGLYRP2, SAA4, SRI, steroid, TGFβ1, ZC3H12A</td>
</tr>
<tr>
<td></td>
<td>اخترال سیستم غدد درون‌ریز، بیماری‌های کواراتشی.</td>
<td>22</td>
<td>A2M, ACTG2, Alpha1 antitrypsin, AMBP, APCS, APOD, APOF, APOM, CETP, chymotrypsin, dehydroisoandrosterone, HDL, homocysteine thiolactone, HP, IL1, Insulin, ITIH4, L-phenylalanine, LDL, MT1G, ORM2, P38 MAPK, phosphorylcholine, PZP, RBP4, SAA4, SERPINA3, SHBG, SLC13A1, SLC37A4, Stat3-Stat3, steroid, TCR, trypsin, TTR</td>
</tr>
<tr>
<td></td>
<td>مولکول‌های کوچک</td>
<td>21</td>
<td>A2M, APCS, APOA1, APOC1, APOF, APOL1, Collagen type IV, ERK1/2, FETUB, GPR119, HBA1/HBA2, HDL, INSULIN, ITIH4, Kallikrein, KLK4, KLK14, Laminin (complex), LGALS3BP, MT1F, Nfkb (complex), P38 MAPK, PCOLCE2, phosphorylcholine, SAA2, SERPINC1, SERPINC1, SHBG, SLC37A4, Sos, trypsin</td>
</tr>
<tr>
<td>T2</td>
<td>سیستروی سیگنالینگ سلولی و برهمکنش با سایر پروتئن‌ها، تروموژ و عملکرد سیستم میانولوزی سیستم ایمنی.</td>
<td>42</td>
<td>2M, APCS, APOA1, Apoc1, APOC1, APOF, APOL1, Collagen type IV, ERK1/2, FETUB, GPR119, HBA1/HBA2, HDL, INSULIN, ITIH4, Kallikrein, KLK4, KLK14, Laminin (complex), LGALS3BP, MT1F, Nfkb (complex), P38 MAPK, PCOLCE2, phosphorylcholine, SAA2, SERPINC1, SERPINC1, SHBG, SLC37A4, Sos, trypsin</td>
</tr>
<tr>
<td></td>
<td>مولکول‌های کوچک</td>
<td>25</td>
<td>A2M, APCS, APOA1, Apoc1, APOC1, APOF, APOL1, Collagen type IV, ERK1/2, FETUB, GPR119, HBA1/HBA2, HDL, INSULIN, ITIH4, Kallikrein, KLK4, KLK14, Laminin (complex), LGALS3BP, MT1F, Nfkb (complex), P38 MAPK, PCOLCE2, phosphorylcholine, SAA2, SERPINC1, SERPINC1, SHBG, SLC37A4, Sos, trypsin</td>
</tr>
</tbody>
</table>

بحث

در پژوهش حاضر تاثیر جراحی LGP بر روی پروتئنوم سرم بیمارانی که تحت عمل جراحی قرار گرفته‌اند بررسی شده است. با توجه به مطالعات پیشین که مشخص گردید در ماه‌های اولیه پس از جراحی LGP کشش و رخ می‌دهد، دو زمان در ۶ ماه اولیه پس از جراحی جهت بررسی می‌گرفت. با استفاده از پژوهشکده شاگان پروتئومیکس، ۲۷ پروتئن شناسایی گردید و ۱۶۵ پروتئن انتخاب گردید. کل دو پروتئن در ۱۷ تفاوت معنادار در ماه‌های اولیه پس از جراحی LGP خصوصاً در ۱۲ تا ۱۵ ماه وجود داشته است.
مقدار داشتند که از این میان 21 پروتئن افتایش مقدار و 16 پروتئن کاهش مقدار داشتند. داده در پایین آزاد در تی. 16 پروتئن شاخص 10 پروتئنی از افتایش مقدار و 6 پروتئنی کاهش مقدار شناسایی شد.

تغییر در مقدار پروتئن‌های سرم‌پایتایی از یک فراآمد بیولوژیک رخ داده در بدن می‌باشد. با توجه به نتایج، جراحی ترکیبی ملاح‌وی بر روی پروتئوم سرم دارد و این نتکه به اینکه بعد سین سرم از جراحی دسته‌بندی تغییرهایی نشان داده و به قسمتی از بخش.

بررسی دقت پروتئن‌های تغییر یافته حاکی از آن است که اکثر پروتئن‌های که تغییر معنی‌دار داشتند در کاهش وزن پس از زنده‌گرفتن و یا جراحی، چاقی از نوع یک پس معمول می‌شود. نتایج حاضر نشان داد که کاهش جراحی به مقدار مشخصی نسبت به RBP4 طبقه بندی شده است. در افراد قاص و مبتلا به مقامات انسولین افتایش می‌باشد. این آبیوتیک در متابولیسم لپیدی، گلزک و تغییر ملکرول انسولین و همچنین در فارینژیال انتقالی نقش دارد. یکی از حاضر یک پایین آوردگی در سرم خون بهبود حساسیت به RBP4 افزایش می‌دهد. در مطالعه حاضر، کاهش معنی‌دار در سطح RBP4 در زمان پس از جراحی شناسایی شد. همچنین با مطالعات پیشین از جراحی کاسترکین باندیک و انسولین افتایش می‌باشد. سطح این پس معمول می‌شود. نتایج آپوپروتئن‌های خون در انسولین‌دار ابتلا به انسولین‌تلقی‌های عروقی و بیماری‌های عروقی از ابتلا به انسولین‌دار و بیماری‌های عروقی افزایش یافت.

علاوه بر تغییرات این دسته از پروتئن‌های عضلانی پروتئن‌های های ناشناخته در این میان 18 پروتئن افتایش و 16 پروتئن کاهش مقدار داشتند. داده در پایین آزاد در T16 پروتئنی از 16 پروتئنی در T2. با بررسی تغییر گزارش‌های پروتئین‌های تغییر یافته و همچنین با در نظر گرفتن عملکرد این گزارش‌ها در آنها مشخص گردید که از این پروتئین‌های بستر، تغییرات 2 پروتئین ناشی بوده و می‌توان برای اولین بار در زمینه کاهش وزن و جراحی قاچی مشخص می‌شود. در حال که تغییرات پروتئین‌های باقیمانند صرفه به دلیل جراحی بوده این موضوع برای درک تغییرات و پروتئین‌های اخیر در قدرت تغییرات دستگاه‌های اکزوسوم‌ها و پروتئین‌های گیرنده‌های طبقه بندی آپوپروتئن‌های گیرنده‌های طبقه بندی APOM مشاهده گردید.
گاستریک پلیکیشن

در زمان‌های اول امیتاز پیام و نهش می‌دهد که پروتئین‌ها در متابولیسم لیپیدها درکیستند.

از نظر صمیمیت حاضری می‌توان استفاده از تکنیک

شناختن پروتئوم‌ها جهت مطالعه پروتئوم سرم تحت تاثیر برای اولین بار کرده که امروز این تکنیک به عنوان LGP
یک ابزار قدرتمندی در شناسایی و آنالیزگیری کمی پروتئین‌ها شناخته می‌شود. بکارگیری کرومومونوگلوبین جهت
دستگاه‌های مطلوب پتیدها و استئاراکت

مقداربندی‌های سطح پروتئوم‌ها که در پی‌های 99

خانه قرار گرفته است. که نکته اصلی مربع و تعداد

وسیله بازگرای جدید محاسبه شده است که این

در مشترک نظر در مطالعات برخی پروتئوم‌های نظیر

LGP مقایسه با جراحی اسلوبی که تمرکز جراحی

محدود نکنده می‌باشد. اشاره کرد. همچنین پیشنهاد می‌شود

در مطالعات آنی، پیشنهادات پیلولوژیکی تغییر یافته ابترا بررسی

شوند. نتایج این تقاضای بیشتر را با مکانیسم مولکولی دلیل

در کاهش وزن و بهبود بیماری‌های متابولیسم پیدا کرد.

نتیجه‌گیری

یافته‌های مطلوبی حاضر شد گاه که مقدار

۲۴ پروتئین

در یا ۲۴ روز از عمل جراحی و مقدار

۶۶ پروتئین در یا ۴ روز از جراحی تقریب می‌باشد می‌گوید. از میان

IIT3 APCS A2M SHBG CFI FETUB

به صورت پایدار بوده است و در هر دور زمان پس APOF

از عمل جراحی نسبت به پیش از عمل شناسایی شد. از میان

gastrointestinal نویس جستجو در پایگاه‌های اطلاعاتی، امکان

شناسایی این ۲ پروتئین که شامل CFP و FETUB

را قرار داده است. نیز در فعالسازی سیستم کلیستر توسط مسر

CFP تناوبی شکرکار دارد و همچنین در تغییر متابولیسم لیپیدها

مقاوم به انسولین و انحلال مصرف می‌باشد. کاهش

معاناداری در میزان این سپ از جراحی کاهش پیدا کرد.

همانطور که از جدول ۲ قابل مشاهده است، از بین

پروتئین‌هایی که تغییرات معناداری داشته‌اند، پروتئین‌های در هر دور

زمان شناسایی شده و این شناسایی ده است که تغییرات در

مورد این پروتئین‌ها به صورت پایدار و جدید داشته است.

SHBG CFI IIT3 ۲۳

در کاراکتر اثر APOF و APSC کاهش وزن در دو رژیم غذایی بر روی پروتئوم خون

پدیده‌ای است نیز در خودشان داشته‌اند. پروتئین‌ها تکرشده در

مطالعه حاضر با افزایش مقدار در هر دور زمان همانند بودن

که الگوی تغییرات مشابهی با کاراکتر دارند.

امروزه مشخص است که جهت انجام یک فرآیند

پیلولوژیکی خاص، پروتئین‌ها به هم به صورت یکپارچه

همکاری می‌کنند. به همین حامل برای اینکه منچی به کمک

چکنن پروتئین‌های شناسایی شده با تغییرات معنادار با

یکسیر در ارتباط سنتز. شکافه‌ی سیریکه‌ی va زمان به به

در بررسی قرار گرفته است. این شکافه‌ی سیریکه‌ی va زمان به به

در APSC اکثریت APOF به همراه کاهش IPA

به این شکافه‌ی منتاز اختصاص داده

می‌شود (با دنگی نگرفت تغییرات پروتئین‌های تغییر یافته و

همین‌طور اندامی که شکافه‌ی APOF پروتئین‌های شناسایی شده با تغییرات معنادار به صورت

اثری در آن شکاف قرار گرفته باشد، چمد است؛ هرچه

این عدد بزرگتر باشد، این احتمال کمتر است. همان‌طور که

گفته شد بهره‌کشیده عضوی از پروتئین‌ها به‌کنن

عملکرد‌های زیستی خاصی را می‌شود. مطلق با آنچه

i-Pathways

ii- Score

Downloaded from ijem.sbmu.ac.ir at 8:35 +0430 on Friday August 9th 2019

Original Article

Effect of Laparoscopic Gastric Plication on the Blood Protein Profile of Obese Subjects Using Shotgun Proteomics

Savedoroudi P¹, Talebpour M², Ghassempour A¹

¹Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran, ²Laparoscopic Surgery Ward, Sina Hospital, Tehran University of Medical Sciences, Tehran, I.R. Iran

e-mail: a-ghassempour@sbu.ac.ir

Received: 08/12/2018 Accepted: 16/03/2019

Abstract

Introduction: Nowadays, bariatric surgery is considered to be the most effective technique in the treatment of morbid obesity. In the current study, the effect of Laparoscopic Gastric Plication (LGP), a new technique, on the serum protein profile of obese patients has been investigated following surgery. Materials and Methods: Serum of 16 obese subjects with mean body mass index (BMI) of 41.2±5.3 kg/m², who underwent LGP was investigated before surgery and at two timepoints post-surgery (T1-1 to 2 months after surgery and T2-4 to 5 months after surgery). Peptide mixtures prepared using Polyvinylidene Fluoride (PVDF) membrane and trypsin enzyme were analyzed by Liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: In the present study 157 proteins were quantified, and twenty-four proteins showed statistically significant different levels at T1 post-surgery, using paired two-sample t-test (adjusted p-value<0.05); of these, levels of 12 increased, while those of 12 decreased. At T2 post-surgery, 16 proteins were differentially regulated (adjusted p-value<0.05), 10 upregulated proteins and 6 downregulated proteins. Conclusion: Due to the significant effect of bariatric surgery on the protein profile of patients, it is possible to study the impact of effective factors on the identified biomarkers and find a new strategy for obesity treatment in the future.

Keywords: Proteomics, Bariatric surgery, Obesity, Mass spectrometry