بررسی ارتباط چگالی رژیم غذایی با نمایه آدیپوستی، میزان متابولیسم استراحت، ضریب تنفس و شاخص‌های ترکیب بدن در زنان چاق و اضافه وزن

نیلوفر رسانی‌نیا، سیده فروغ سجادی، علیه مریزان‌بابایی، سارا پوریان، الهه رشیدی‌پورگری و دکتر میر سعید یکتایی نژاد. از دانشکده پزشکی و خدمات بهداشتی – دانشگاه شهید بهشتی

دکتر حسین امانتی، دکتر خدیجه میرزایی

چکیده

مقدمه: چگالی انسانی غذایی به حسب محوریت انرژی غذا (کیلوکالری) تقسیم به ورود غذا (گرم) تعیین شده است که تأثیر مهمی در تنظیم انرژی مصرفی، کاهش وزن ویژه‌شکمی و درک شده‌است. این ارتباط به نام آدیپوستی، میزان متابولیسم استراحت و ضریب تنفس را کمتر می‌نماید. فرض می‌شود که مدرنیتهای در زنان چاق و اضافه وزن بود. موارد و روش‌ها: این مطالعه به روی 300 نفر دارای اضافه وزن و چاق انجام شد. این مطالعه محصول ارائه در پرستایش ترک مصرف مواد غذایی یکتا و روا و چگالی انرژی غذایی با تکمیل انرژی در فری بر وزن کل غذای خورده شده به دست آمد. یافته‌ها: ارتباط معنی‌داری بین چگالی انرژی غذایی با سن، میزان تولید هالوکسیدر، میزان غذایی سنتی و ضریب تنفس در زنان چاق و اضافه وزن بود. میزان معنی‌داری در فری بر وزن کیلوکالری و ضریب تنفس همچنین معادل بود (P<0.05). نتیجه‌گیری: بررسی ارتباط بین یک‌واحد افزایش در این چگالی جزئیی غذایی به سبب مصرف این چگالی انسانی غذایی و نمایه آدیپوستی می‌تواند به تکمیل چگالی انسانی غذایی در زنان چاق و اضافه وزن بود. بهبود افراد فیوزن/1/80 ویژه افراد بی‌پایید از طریق نمایه آدیپوستی با چگالی انرژی غذایی ارتباط معنی‌داری ندارد.

واژگان کلیدی: چگالی انرژی رژیم غذایی، نمایه آدیپوستی، میزان متابولیسم استراحت، ضریب تنفس، اضافه وزن، قصیده

دریافت مقاله: 1387/6/5، دریافت اصلاحیه: 1387/7/16، پذیرش مقاله: 1387/7/30

مقدمه

چگالی انرژی رژیم غذایی تأثیر مهمی در تنظیم انرژی

دریافت دارد: در واقع انرژی دریافتی با کاهش چگالی انرژی
-row%a%b%c%d%e%f%g%h%i%j%k%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z

 iii - Vaspin
 iv - Adiponectin
 v - Fat free mass
 vi - Body fat mass

 solucións, چگالی روی زیر غذایی باعث کاهش وزن، حفظ وزن کاسته شده و کاهش چاقی شکنی و دور کمر می‌شود و همچنین مانع از مصرف بیش از حد غذا و افزایش توده‌ی چربی می‌شود. چ

چاقی یکی از مهم‌ترین عوامل خطر سلامتی است که می‌تواند منجر به بروز عوارض متابولیک از جمله دیابت نوع 2، مقاومت به استرولوژی، بیماری‌های قلبی، عروقی و سرطان

شود. افزایش شیوع چاقی در دو دهه گذشته، به ویژه در کشورهایی در حال توسعه، این مسئله را به یک چنین

بهداشت عمومی در این کشورها ممکن کرده است. چ

شیوع اضافه وزن و چاقی از سال 1980 تا 2012 در بین مردان از 28 به 31 درصد و در زنان از 29 به 32 درصد و در

کودکان از 16 به 23 درصد رسیده است. در ایران نیز

شیوع اضافه وزن و چاقی بیش از 25 درصد بوده است. چ

بافت چربی مبتنی شناسخته‌های تحقیقات و مطالعات

اندکترین پیچیده و بسیار خطرناک است که همواره و عوامل

متابولیکی مختلفی تولید می‌کند. برای تعیین وجود چربی

اضافه‌ی می‌توان از اندازه‌ی دور کمر، دور کمر به دور پا،

و نامیاینی، دنباله‌ی استفاده کرد. افزایش توده‌ی چربی با

افزایش خطر مرگ زودرس و افزایش توده‌ی عضلانی با

کاهش این خطر همراه است. همچنین نیاز به چربی رژیمی به

شکلی تهدید کننده جدی سلامتی است. نامیایی توده‌ی

درکار اندازه دیگر دور، نسبت دور کمر به دور پا، نسبت دور کمر به دور پا و نسبت دور کمر به دور پا به

افزایش توده‌ی چربی مربوط می‌باشد. ن hômیا

یک لیست نامیایی آبیوسپتی (AF) برای نشان دادن درصد بیش از چربی به نام اندازه‌گیری چربی بدن باشند. چ

از روش‌های افراد مورد مطالعه

این مطالعه مقطعی بر روی 201 نفر به روش نمونگیری

تصادفی در سال 1394-1396 از میان خانم‌های مراجعه‌کننده

به مرکز بهداشتی درمانی شهر تهران لانگ شد. از میان 25

مرکز بهداشتی درمانی تحت پوشش دانشگاه علوم پزشکی

تهران، به طور ص�فی و سیاه پوش و با انتخاب شدن و پس از ماه‌های‌های لازم به مدیریت مراکز،

سنجش، میوه‌ها، لیپیتی کچرب و گوشت لخم، چگالی

Row%a%b%c%d%e%f%g%h%i%j%k%l%m%n%o%p%q%r%s%t%u%v%w%x%y%z

iii - Vaspin
 iv - Adiponectin
 v - Fat free mass
 vi - Body fat mass

ii - Adiposity index

i - Body mass index

بی‌پروازی افراد در افزایش وزن و چاقی ارتاب ملی

نشستن دارند. توجه به الگوی مصرفی و چگالی انزی

تجربه از پیشگیری فیزیولوژیکی از اثرات فشار و فشار بر مصرف غذایی. این تحقیق نشان می‌دهد که بدن می‌تواند با افزایش فشار فشار بر مصرف غذایی افزایش دهد.

IR.TUMS.VCR.REC.1397.065
توظیح نویسندگان داده‌ها با استفاده از نمودار آزمون کولمبوکوف - اسمیتروف انجام شد. با توجه به تبعیض خطی‌شکل و متنبکتی از اکثریت افراد از توزیع نرسیده، از آزمون‌های پارامتریک بین‌آمار آنالیز داده‌ها استفاده شد. افراد به اساس چگالی انرژی رژیم غذایی مصرفی به دو گروه قسمت داده شدند (چگالی انرژی غذایی بالا و پایین). حد مرزی باید طبیعی بندی شرکت‌کنندگان بر اساس متوسط چگالی انرژی در این مطالعه و مطالعه کناره‌گیران 92 تعبیر شد. شرکت‌کنندگان بی‌درآمد از کاری که در این آزمون انجام داده‌هایشان را درک کرده‌اند. در این پژوهش از چهار روش ارزیابی شد که در انتخاب بیانی خود قرار داشت. باید دور کمتر حد مرزی 80 سانتی‌متر در نظر گرفته شد. ارزیابی رژیم غذایی

در ارزیابی دریافت‌های غذایی افراد، از یک پرسشنامه تکرار مصرف غذایی به کمک روا و پایا که شامل 147 قلم مواد غذایی بود استفاده شد.

در این پژوهش، میزان طبقه‌بندی شرکت‌کنندگان وسیع‌تر از میزان طبقه‌بندی پرسشنامه کارشناسان تغذیه در دیده‌شده تکمیل گردید. هر پرسشنامه شامل پرسش‌هایی از موارد غذایی به‌هر اندازه سهم انتقال‌داده‌بود. ارزیابی حاصل از مقایسه با دست آمده از موارد غذایی NUTRITIONIST مصرفی از استفاده از دست‌افزار 4 بررسی شد.

چکاک‌آنرژی رژیم غذایی

کل انرژی دریافتی روزانه بر اساس مجموع انرژی‌های حاصل از موارد غذایی مصرفی محاسبه شد. در این روش، محاسبه چگالی انرژی رژیم غذایی از تقسیم انرژی غذایی بیکالکاری بر وزن موارد غذایی (گرم) (به استثنای نوشیدنی‌ها) به دست آمد.

ارزیابی عفافیت بدنی

پرای ارزیابی سطح غفایی بدنی از قرب کوتاه پرسشنامه IPAQ (استفاده شد که دارای 7 سؤال است و توسط سازمان جهانی بهداشت طراحی شده است). از شرکت‌کنندگان خواسته شد به سوالات مانند زمان صرف شده باید را رفت، غفایی‌های با شدت متوسط و فعالیت‌های دیده در مدت کیفیت داشته باشد. مطابق با راهنما IPAQ راهنمانی برای پردازش داده‌ها، داده‌های غفایی بدنی به دقتی در هفته تبلیغ شد و مدل ماتریکس (MET/minute/week) محاسبه شد. روانی و پایایی این ابزار قابل در زنان برخی از ایران از مورد ارزیابی قرار گرفته و قابل استفاده است. روش‌های اماری

تجزیه و تحلیل آماری داده‌ها با استفاده از نرم‌افزار SPSS نسبت به 700 نفر، SPSS (SSPS) آمریکا (انجام شد.)
جدول 1- مشخصات کلی افراد تحت مطالعه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>حداقل</th>
<th>حداکثر</th>
</tr>
</thead>
<tbody>
<tr>
<td>جمعیت شناختی (سن) (سال)</td>
<td>67/00</td>
<td>67/00</td>
</tr>
<tr>
<td>وزن (کیلوگرم)</td>
<td>59/00</td>
<td>67/00</td>
</tr>
<tr>
<td>قد (سانتی متر)</td>
<td>142/00</td>
<td>143/00</td>
</tr>
<tr>
<td>ترکیب بدن</td>
<td>24/00</td>
<td>24/00</td>
</tr>
<tr>
<td>BMI</td>
<td>71/00</td>
<td>71/00</td>
</tr>
<tr>
<td>BFM</td>
<td>31/00</td>
<td>31/00</td>
</tr>
<tr>
<td>FFM</td>
<td>24/00</td>
<td>24/00</td>
</tr>
<tr>
<td>AI</td>
<td>67/00</td>
<td>67/00</td>
</tr>
<tr>
<td>میزان متابولیسم بتنی و دانسیتی انرژی</td>
<td>67/00</td>
<td>67/00</td>
</tr>
</tbody>
</table>

میزان متابولیسم استرئول (کیلوکالری/روز)
میزان متابولیسم استرئول در هر کیلوگرم وزن
بنی (کیلوکالری/روز/کیلوگرم)

ده کسبی کربن تولیدی (میلیلیتر/دقیقه)
امسیزن مصرفی (میلیلیتر/دقیقه)

ضریب بتنی و دانسیتی انرژی رژیم (کیلوکالری/گرم)

شماره کل: 201 نفر

کم، دور کرم به دور بایست و نمایه آپیوپسی نقاوت
میزان متابولیسم بتنی و دانسیتی انرژی رژیم غذایی

منفی از همبستگی دو بندید پرسون

میزان متابولیسم استرئول در این مطالعه و مطالعات دوستانه (20)

تغییر شد. همبستگی دو بندید که میزان
میزان متابولیسم استرئول در این مطالعه و مطالعات دوستانه (20)

در کرم (201 نفر) و شرکتکنگان با تراکم انرژی بیشتر

از 24/00 در گروه (201 نفر) قرار گرفته. نتایج مطالعه

دانشیار که میزان متابولیسم استرئول در سن، میزان اماسیزن

مصرفی، میزان متابولیسم استرئول با ایزای کیلوگرم وزن

بدن در بین دو گروه وجود دارد (201/000) (P<0/001).

به منظور بررسی بین محورهای بیشتر، رابطه بین میزان متابولیسم

استرئول با ایزای کیلوگرم وزن بدن و چگالی انرژی غذایی

نیز مورد مطالعه قرار گرفت. به توجه به نتایج در سطح آماری

هرچنین تقارن میزان متابولیسم استرئول، میزان دی- اکسیدکربن (P<0/001)

اما در ارتباط با متغیرهای وزن، تناوبه چندی، در دو گروه وجود

دارد (201/000) (P<0/001)، پس از آنکه چگالی انرژی غذایی بارای سن

کرم شرکت کننگان بر اساس چگالی انرژی رژیم غذایی

مصرفی به دو گروه تقسیم شدند (چگالی انرژی بالا و

پایین). چون میزان برای طبقه بندی شرکت کننگان بر اساس

متوسط چگالی انرژی در این مطالعه و مطالعات دوستانه (20)

تغییر شد. همبستگی دو بندید که میزان
میزان متابولیسم استرئول در این مطالعه و مطالعات دوستانه (20)

در کرم (201 نفر) و شرکتکنگان با تراکم انرژی بیشتر

از 24/00 در گروه (201 نفر) قرار گرفته. نتایج مطالعه

دانشیار که میزان متابولیسم استرئول در سن، میزان اماسیزن

مصرفی، میزان متابولیسم استرئول با ایزای کیلوگرم وزن

بدن در بین دو گروه وجود دارد (201/000) (P<0/001).

به منظور بررسی بین محورهای بیشتر، رابطه بین میزان متابولیسم

استرئول با ایزای کیلوگرم وزن بدن و چگالی انرژی غذایی

نیز مورد مطالعه قرار گرفت. به توجه به نتایج در سطح آماری

هرچنین تقارن میزان متابولیسم استرئول، میزان دی- اکسیدکربن (P<0/001)

اما در ارتباط با متغیرهای وزن، تناوبه چندی، در دو گروه وجود

دارد (201/000) (P<0/001)، پس از آنکه چگالی انرژی غذایی بارای سن
در ادامه، رابطه بین ضریب تنفس و چگالی انرژی غذایی مورد مطالعه قرار گرفت. با توجه به نتایج به دست آمده، بین ضریب تنفس و چگالی انرژی غذایی رابطه معناداری وجود نداشت (P>0.05). با تغییر چگالی انرژی غذایی برای سن و توده‌ی بدون حجم بین میزان متابولیسم استرخاسته به آزمون یک کیلوگرم وزن بدن و چگالی انرژی مصرفی ارتباط معناداری وجود نداشت (P>0.05).

سن، توده‌ی بدون حجم و فعالیت بدنی تغییرات شد. اما همچنان ارتباط معناداری بین میزان متابولیسم استرخاسته به غذای هر کیلوگرم وزن بدن و چگالی انرژی غذایی وجود داشت (P<0.05). نتایج این مطالعه نشان داد که به‌این‌که یک واحد افزایش در چگالی انرژی غذایی، میزان متابولیسم استرخاسته با آزمون یک کیلوگرم وزن بدن میزان متابولیسم استرخاسته به آزمون یک کیلوگرم وزن بدن.

جدول 2- تفاوت میانگین مطالعه و چگالی انرژی غذایی در بین دو گروه با چگالی بالا و پایین

<table>
<thead>
<tr>
<th>مقدار</th>
<th>تغییرات اکسترنی</th>
<th>انحراف معیار</th>
<th>مقدار</th>
<th>تغییرات اکسترنی</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.05</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.06</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.06</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.07</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.07</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.08</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.08</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.09</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.09</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.10</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.10</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
</tbody>
</table>

میزان متابولیسم، ضریب تنفس و دانستنی انرژی

<table>
<thead>
<tr>
<th>مقدار</th>
<th>تغییرات اکسترنی</th>
<th>انحراف معیار</th>
<th>مقدار</th>
<th>تغییرات اکسترنی</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.01</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.02</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.02</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.03</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.03</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.04</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.04</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.05</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.05</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.06</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.06</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.07</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.07</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.08</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.08</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.09</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.09</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
<tr>
<td>0.10</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
<td>0.10</td>
<td>دور کمر (سانتی‌متر)</td>
<td>0.79±0.62</td>
</tr>
</tbody>
</table>
جدول 3- ارتباط و همبستگی بین متغیرهای مطالعه و چکالی انرژی غذایی

<table>
<thead>
<tr>
<th>‌ p‌</th>
<th>مقدار‌</th>
<th>نام متغیر‌</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.001</td>
<td>0.01</td>
<td>چکالی انرژی‌</td>
</tr>
<tr>
<td>< 0.001</td>
<td>0.04</td>
<td>سن (سال)‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.76</td>
<td>وزن (کیلوگرم)‌</td>
</tr>
<tr>
<td>0.04</td>
<td>0.73</td>
<td>قد (سانتیمتر)‌</td>
</tr>
<tr>
<td>0.1</td>
<td>0.71</td>
<td>دور کمر (سانتیمتر)‌</td>
</tr>
<tr>
<td>0.2</td>
<td>0.72</td>
<td>دور کمر به دور پا برای (کیلوگرم/متر)‌</td>
</tr>
<tr>
<td>0.1</td>
<td>0.74</td>
<td>دور کمر به دور پا برای (کیلوگرم/متر)‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.76</td>
<td>BMI‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.78</td>
<td>FFM‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.73</td>
<td>AI‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.76</td>
<td>متابولیسم استراحت (آیوآی‌راز)‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.71</td>
<td>متابولیسم استراحت در هر کیلوگرم وزن بن‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.72</td>
<td>(آیوآی‌راز/کیلوگرم)‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.74</td>
<td>BMI‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.78</td>
<td>FFM‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.76</td>
<td>AI‌</td>
</tr>
</tbody>
</table>

جدول 4- ارتباط بین میزان متابولیسم استراحت بر حسب کیلوگرم وزن بن‌ با چکالی انرژی غذایی

<table>
<thead>
<tr>
<th>‌ p‌</th>
<th>مقدار‌</th>
<th>شرایط‌ استاندارد میانکین‌</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.001</td>
<td>0.01</td>
<td>مدل خام‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.76</td>
<td>مدل 1‌</td>
</tr>
<tr>
<td>< 0.001</td>
<td>0.73</td>
<td>مدل 2‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.74</td>
<td>مدل 3‌</td>
</tr>
</tbody>
</table>

ارتباط بین ضریب تنفس با چکالی انرژی غذایی

<table>
<thead>
<tr>
<th>‌ p‌</th>
<th>مقدار‌</th>
<th>شرایط‌ استاندارد میانکین‌</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.001</td>
<td>0.01</td>
<td>مدل خام‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.76</td>
<td>مدل 1‌</td>
</tr>
<tr>
<td>< 0.001</td>
<td>0.73</td>
<td>مدل 2‌</td>
</tr>
<tr>
<td>0.01</td>
<td>0.74</td>
<td>مدل 3‌</td>
</tr>
</tbody>
</table>
جدول 5- ارتباط بین فرضه های غذایی و چگالی انرژی غذایی

<table>
<thead>
<tr>
<th>مقایسه</th>
<th>چگالی انرژی بالا (تعداد 146)</th>
<th>چگالی انرژی بالا (تعداد 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>انحراف معیار</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقادیر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فلات تنفسی شده (کرم در روز)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فلات کامی (کرم در روز)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>لیپینوس کوبی (کرم در روز)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>لیپینوس پرف (کرم در روز)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کورتزن قرص (کرم در روز)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کورتزن سیست (کرم در روز)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادما و اچا (کرم در روز)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کورتزن (کرم در روز)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بحث

یافته‌های پژوهش حاضر نشان داد که بین چگالی انرژی غذایی با سن، میزان متابولیسم استریومن، میزان متابولیسم استریومن در هر کیلوگرم وزن و ضریب تنفس ارتباطی وجود دارد. مصرف روغن غذایی با چکل پاس از تعیین برای سه، توده‌های بدن این مقدار و یا خالی و متابولیسم میان متابولیسم استریومن در هر کیلوگرم وزن بدن با افزایش می‌دهد که این ارتباط بین چگالی انرژی غذایی و تغییراتی در آن موجود است.

پاسخهای پیشنهادی به دست آمده از بررسی حاضر، افزایش کمک در بالا با چکل بالا مصرف می‌کند، میزان متابولیسم استریومن بالاتر نسبت به سایر چکل بالای مصرف می‌کند. دانست که نظر مورد استریومن و مصرف میزان متابولیسم استریومن در چکل بالا مصرف می‌کند. با وجود این ارتباط میان متابولیسم و ضریب تنفس با چکل بالا و ضریب تنفس بود که باعث افزایش ضریب تنفس شد. همچنین با توجه به این مطالعه، مواد غذایی با چکل بالایی
References

3. Karimi G, Azadbakh L, Haghighatdoost F, Esmailzadeh A. Low energy density diet, weight loss maintenance, and risk of cardiovascular disease following a...

29. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr 2005; 82: 941-8.

Association of Dietary Energy Density with Adiposity Index, Resting Metabolic Rate, and Respiratory Quotient in Overweight and Obese Women

Rasaei N1, Sajjadi F1, Mirzababaei A1, Pooyan S1, Rashidbeygi E1, Yekaninejad S2, Imani H3, Mirzaei Kh1

1Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran. 2Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, 3Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, I.R. Iran.

e-mail: mirzaei_kh@tums.ac.ir

Received: 26/06/2018 Accepted: 22/10/2018

Abstract

Introduction: Dietary Energy Density (DED), defined as the energy content of foods (kJ or kcal) per unit weight of foods (g) has an important effect on the regulation of energy intake and some health-related factors, including adiposity index (AI), weight reduction and weight maintenance; however, its function on the regulation of resting metabolic rate (RMR) is less understood. Therefore, the aim of this study was to investigate the association of DED with AI, RMR, respiratory quotient (RQ) and anthropometric indices in overweight and obese women. Materials and Methods: A total of 301 overweight and obese women were included in this comparative, cross-sectional study. Body composition was measured using the body composition analyzer. RMR was measured by means of indirect calorimetry. Usual food intakes of subjects over the past year were evaluated through the use of a semi-quantitative food frequency questionnaire. Results: There was a significant difference between DED and age, CO2 production, RMR, RMR per kg of weight and the RQ (P<0.05). After adjusting the data for age, lean mass and physical activity, the relationship between DED and RMR per kilogram of body weight and RQ was still meaningful (P<0.0001). There was no significant relationship between DED and AI (P=0.55). Conclusion: Based on the findings of this research, one unit increase in DED causes a 0.89 unit increase in the RMR per kilogram and 0.18 unit increase in RQ, whereas no relationship was observed between AI and DED.

Keywords: Dietary energy density, Adiposity index, Resting metabolic rate, Respiratory quotient, Overweight, Obesity