تأثير هشت هفته تمرين تركيبي و مكمل دهی آل-آرزئین به سطحブラاسمایی مشتق اکسیدهی داکسیگوانوزین (8-OHdG).

مالوندی الدهید و ظرفیت تام آنتی اکسیدانی مردان سالماند (مدل سازی جند متغیره طولی)

ندا کیلانی، دکتر روح‌الله حق‌شناس
(1) گروه آمار و اپیدمیولوژی، دانشگاه بیمارستانی شهید بهشتی، دانشگاه علوم پزشکی، تهران، ایران. (2) گروه فیزیولوژی و روزنامه‌نگری، دانشگاه علوم پزشکی، تهران، ایران. (3) مرکز مطالعاتی و مراقبت‌های پیشگیری، سمنان، ایران. (4) دانشکده زیست‌شناسی انسانی، دانشگاه شهید بهشتی، دانشگاه علوم پزشکی، تهران.

چکیده
مقیده: سالماندن فیزیکی یکی از شناختی‌های ژنتیکی است که با چگونگی آسیب‌های اکسیدانی به مولکول DNA همراه است. از آنجا که فعالیت های ورزشی و استفاده از مواد ضد اکسیدانی در کاهش عوارض سالماندن در این مطالعه تأثیر هشت هفته تمرين ورزشي و مصرف آل-آرزئین بر مصروف‌زادگی اکسیدهای داکسیگوانوزین (8-OHdG)، تأثیر تام در بدن مطلق مرتباً قبل از تأثیر تام در بدن مطلق، تاکوکال، 8-OHdG، از دو گروه مورد مطالعه قرار گرفت.

مواد و روش‌ها: 22 مورد سالماند با میانگین سنی 74±7/8 در پایانات تمرین و به صورت تصادفی در 2 گروه 11 نفری گروه تمرین و گروه کنترل تفاوت قرار گرفت. از پروتکل طراحی شده تمرین دوستگانی و دو فردی را در هر جلسه تمرین به مدت 100 میلی‌گرم مانند سانتیمتری که به صورت مکمل و گروه مکمل، روزهای بیش از صدها، به‌طور مداوم در مدت 6 ماه انجام داده، گروه تمرین مصرف خون‌آشامی و گروه سالماندن به پایین‌ترین تاکوکال، 8-OHdG، از دو گروه مورد مطالعه قرار گرفت.

این کلیه‌ها: تیپ‌هایی با تفاوت‌های بستر و وپسات‌های نسبی (P<0/05) در میان مراقبت‌های پیشگیری پیوندی بین استرس اکسیدی و تمرینات تركیبی ونیزی و قدرتی متواند با عنوان کاهش دهنده شاخص‌های استرس اکسیدی و بهبود‌دهنده سیستم آنتی اکسیدانی در سالماندن مورد استفاده قرار گیرد.
مقدمه

سالماندي با کاهش در برخی از عملکدهای فیزیولوژیکی و بدنی از جمله قدرت و ظرفیت قلبی- عروقی و اختلال در عملکرد عضله اکسیژن قنده‌های سرطان آسیب‌پذیری از عوامل استرسی و زودگی ریوی به‌طور خاص تأثیر مثبتی را در درمان سالماندی باز کرده‌اند. درحال حاضر مطالعات بهبود عملکرد عضله اکسیژن قنده‌های سرطان مطالعه‌های متعددی در مورد خواص استرس ابداع نشان داده است که هیپوکسی باعث افت‌های عمده عضله اکسیژن قنده‌های سرطان شده است. در این مطالعه به‌عنوان یک روش می‌تواند مطالعه‌هایی با استفاده از هیپوکسی موجود در محیط عضله اکسیژن قنده‌های سرطان انجام شود. در حال حاضر، دانسته‌ها نشان می‌دهند که تأثیرهای مختلف عضله اکسیژن قنده‌های سرطان در بهبود عملکرد عضله اکسیژن قنده‌های سرطان مطالعات مورد حاشیه است. در این مطالعه، به‌عنوان یک روش می‌تواند مطالعه‌هایی با استفاده از هیپوکسی موجود در محیط عضله اکسیژن قنده‌های سرطان انجام شود.

مواد و روش‌ها

در این مطالعه نیمی تحریک با طرح پیش آزمون پس آزمون و به روش دوس کوز پس از تهیه طرح و اخک‌کردن تیم. وبازی‌های اکتشافی با شماره 1396.1136 که در زمینه خلاقیت فناوری و همکاری در اختلالهای دانشگاه علوم پزشکی تهران، 44 مورد سالماندی در دو روش روشگاهی و بهبود روشگاهی با صورت داوطلبانه و در دسترس شهر اصفهان و سالمندی های پنجم به افزایش پیشرفت قدرت عضلات

vi - Jabecka
vii - Tripathi
viii - High Intensity Interval Training
ix - Anti Natriuretic Peptide

i - 8-hydroxydeoxyguanosine
ii - Reactive oxygen species
iii - Malondialdehyde
iv - Total antioxidant capacity
v - Cadore
میلی‌گرمی (شامال، 12) به (Microcrystalline Cellulose, P.V.P, Magnesium, Stearate صورت روزانه استفاده کردن.۱۱ گروه EP نیز علاوه بر تمرین از مالتودکستران، ۱۱ به عنوان داروی دوم به همان اندازه و شکل مکمل واقعی استفاده کردند. شایان ذکر است که مصرف مکمل ال-آرژنین و داروی یک ساعت بعد از صبحانه و با مدت یک بی‌ساعته ترینتين تجویز شد. گروه مکمل نیز فقط روزانه ۱۰۰۰ میلی‌گرم مکمل ال-آرژنین بدون هیپکوگن فعالیت و روزانه استفاده کردن. گروه شاهد نیز بدون هیپکوگن فعالیت و بدون مصرف هیچ مکملی به انجام امور روزانه مثل قبل پرداختند. این پژوهش در هر چهار گروه به صورت موازی از لحاظ زمینی و محیطی به شدت هفته به طول انجامید.۱۱ برای رسیدن به مشکل و رضایت آگاهانه، کنی یک حضور در مطالعه، معیارهای خروج نیز عبارت بود از مشکلات ارتودوکسی، قلمی و تنفسی، ناتوانی در انجام تمرین قدرتی، مصرف سیگار، والکال، مصرف مکمل‌های آنتی‌بیوتیک‌ها، عدم تمایل به حضور در مطالعه در هر مقطع زمانی گروه RPE + یک اجرای برنامه تمرینی به مدت سه هفته در هفته، روزانه ۱۰۰۰ میلی گرم مکمل ال-آرژنین تهیه شده از شرکت دارویی کارنر PNC به کد گذاری ۱۲۳۳۲۹۴۰۱۵۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۱۰۰۱
پایانه تمرین مقاومتی شامل حرکات پرس سینه هالتر، لت دست باز از جلو، پرس سرشاره دمبل، جلوپاها، دستگاه خوابیده و ساق استفاده با استفاده از ترکیب شد.

یک هفته قبل از شروع پروتکل ضمن ناحیه آموزش‌های لازم -آزمودنی‌ها اندازه‌گیری و مطابق جدول 1 تمرینات اجرا می‌شود. تمرینات هوازی نیز شامل استفاده از دورچرخه ثابت یک در هفته اندازه‌گیری می‌شود و در هفته پایانی به 30 دقیقه و 80 درصد ضربان قلب هدف رسانده شد.

(جدول ۱)

قبل از شروع تمرین، هر این، پس از انجام فعالیت در هر جلسه، شدت تمرین با استفاده از فرمول کارون " THR = ((HR_{max} - HR_{rest})\times\text{intensity}) + HR_{rest} " در حساب سنج پولار محسوب و کنترل گردید. همچنین از مقایسه بود، چگونه تغییرات و کنترل تمرین انجام گردید. این تمرینات مقاومتی و بعد با فاصله دو دقیقه

ترمین هوازی انجام می‌شود.

برای جمع‌آوری نمونه‌های خونی، مقدار ۵ سی‌سی خون از ورد بازوبی آزمودنی‌ها پیش از شروع پروتکل تمرین و 48 ساعت پس از آخرین جلسه تمرین. بعد از ۱۲ ساعت ناشی از ساعت 8 الی ۱۰ صبح گرفته شد. نمونه‌ها در لوله‌های حاوی ترنتینور و پس از جداسازی پلاسم از سرم جهت نگهداری مراحل به آزمایشگاه متنقل در دانشگاه به سپاس به سایه‌ریتی است. در دقتی سنتیفیک و پس از جداسازی پلاسم از سرم جهت انجام استاندارد به دست آمده ۱۲۰ دور

در دقیقه سانتی‌فیک و پس از جداسازی پلاسم از سرم جهت انجام استاندارد به دست آمده.

۲- در جهت استاندارد کناره‌گیری شد. همچنین جهت اندازه‌گیری کلری مکسیمیال، اندازه‌گیری ترکیب آنزیم‌های ایزوزیر (استخراج کناکور آمریکا) و روش آنیوزرد با استفاده از کیدک‌های

مخصوص اندازه‌گیری کلری مشخص می‌شود.

MDA و 8-OHdG با توجه به ارتباط معنی‌دار میان

8-OHdG و TAC و MDA با پیامدهای تأثیر ماده

8-۱۰۸/۶۸۰۷۵/۷۱</div>
جدول ۲- نتایج تحلیل کوواریانس و آزمون تفکیک سببک برای متغیرهای TAC و MDA 8-OHdG

<table>
<thead>
<tr>
<th>P</th>
<th>F</th>
<th>ضریب</th>
<th>متغیر وایسته</th>
<th>پیش آزمون</th>
<th>کروه</th>
<th>کروه مکمل</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.001</td>
<td>0.001</td>
<td>-0.58</td>
<td>8-هیدروکسی-۲-دی-آکسی کوانولین</td>
<td>۰.۷۸</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
</tr>
<tr>
<td>0.01-0.05</td>
<td>0.05</td>
<td>-0.57</td>
<td>اندوز اثر کوانولین</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
</tr>
<tr>
<td>0.05-0.1</td>
<td>0.1</td>
<td>-0.56</td>
<td>۸-هیدروکسی-۲-دی-آکسی کوانولین</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
<td>۰.۷۶</td>
</tr>
<tr>
<td>0.1-0.2</td>
<td>0.2</td>
<td>-0.55</td>
<td>اندوز اثر کوانولین</td>
<td>۰.۷۵</td>
<td>۰.۷۵</td>
<td>۰.۷۵</td>
</tr>
</tbody>
</table>

انواع مختلف سببک:
- S.E: مقیاس با روند پارامتری
- 8-هیدروکسی-۲-دی-آکسی کوانولین
- کوانولین
- وابستگی (ناتوکام/میلی لتر)
- وابستگی (ناتوکام/میلی لتر)

جدول ۳- برآورد پارامتر و اندازه اثر هر کروه بر متغیرهای TAC و MDA 8-OHdG

<table>
<thead>
<tr>
<th>کروه مکمل</th>
<th>EP كروه</th>
<th>S.E كروه</th>
<th>ضریب</th>
<th>متغیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.58</td>
<td>-0.57</td>
<td>-0.56</td>
<td>0.56</td>
<td>8-هیدروکسی-۲-دی-آکسی کوانولین</td>
</tr>
<tr>
<td>۰.۷۶</td>
<td>۰.۷۷</td>
<td>۰.۷۷</td>
<td>اندوز اثر کوانولین</td>
<td></td>
</tr>
</tbody>
</table>

انواع مختلف سببک:
- S.E: مقیاس با روند پارامتری
- 8-هیدروکسی-۲-دی-آکسی کوانولین
- کوانولین
- وابستگی (ناتوکام/میلی لتر)
- وابستگی (ناتوکام/میلی لتر)

انواع مختلف سببک:
- S.E: مقیاس با روند پارامتری
- 8-هیدروکسی-۲-دی-آکسی کوانولین
- کوانولین
- وابستگی (ناتوکام/میلی لتر)
- وابستگی (ناتوکام/میلی لتر)

امتحان معیار پارامتر S.E.

ملاحظه: مقایسه نتایج بین تنش‌های مکمل و کروه در صورت S.E. برابر با 0.001.
نمودار ۱- میانگین متغیرهای TAC و MDA-۸-OHdG در دو مقطع زمانی پیش و پس آزمون

بحث

پس از مشخص شدن تأثیر معنادار کروه بر متغیرهای TAC و MDA-۸-OHdG، نتایج پژوهش حاضر نشان داد که معنادار کروه بر تک متغیرهای TAC و MDA-۸-OHdG این تأثیر در دو متغیر TAC و MDA-۸-OHdG می‌شود. مکمل آل‌ارزنین و تمرین ترکیبی بیشترین تأثیر را بر هر سه متغیر TAC و MDA-۸-OHdG داشت و با همین‌طور که در جدول ۲ و ۳ مشاهده می‌شود. تأمین نتایج این آزمون با تأکید بر اهمیت تمرین‌های ترکیبی را به‌عنوان یکی از راه‌های مؤثر بر توانایی افزایش می‌کند.

i - Tripathi & Pandey
References

The Effect of Eight Weeks Concurrent Training and Supplementation of L_Arginine on Plasma Level of 8-hydroxydeoxyguanosine (8-OHdG), Malondialdehyde and Total antioxidant capacity in Elderly Men (Multivariate Longitudinal Modeling)

Gilani N1, Esmaeili A2, Haghshenas R2

1Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran, 2Department of Sport Sciences, Faculty of Humanities, Semnan University, Semnan, I.R. Iran.

e-mail: rhm@semnan.ac.ir

Received: 15/04/2018 Accepted: 13/10/2018

Abstract

Introduction: Aging is a biological process that is associated with accumulation of oxidative damage to the DNA molecule. Considering that physical activities and nutritional supplements play an effective role in reducing the effects of aging, this study investigated the effects of eight weeks concurrent training and supplementation of L-arginine on stress oxidative biomarkers, including 8-hydroxydeoxyguanosine (8-OHdG), Malondialdehyde (MDA) and Total antioxidant capacity (TAC) in elderly men. Materials and Methods: Forty-four elderly men (mean age: 67.77±4.61 years), were selected and randomly divided into four groups (n=11 each): Concurrent Training+Supplement group (ES); Concurrent Training+Placebo group (EP); Supplement group and the Control group. The Concurrent Training+Supplement and Concurrent Training+Placebo groups performed the exercise protocol of eight weeks of concurrent training, three sessions per week. Every morning, one hour before exercise training, the concurrent Training+Supplement and the supplement groups consumed 1000 mg of L-Arginine. ELISA methods were used for measurement of biochemical variables and for analysis of data we used the multivariate longitudinal model.

Results: There were significant between-group differences in changes of 8-OHdG, MDA and TAC (P<0.001). OHdG and MDA in all three groups of ES (35.38% and 61.8%), EP (22.59%, 55.55%) and supplement group (14.94%, 95.3%) had a significant decrease (P<0.001). Also TAC increased significantly in the ES-(135.56%) EP-(76.21%) and the supplement group (21.27%) (P<0.001). Joint effect of training and supplementation was greater than their individual effects on 8-OhdG (β=5.16, P<0.001), TAC (β=-2.30, P<0.001), and MDA (β=3.50, P<0.001). Also exercise per se had a significantly greater effect on responses than just supplementation. Conclusion: Findings of this study, it demonstrate that supplementation of L-arginine and combined aerobic and strength training can be used as to lower oxidative stress indices and improve antioxidant systems in the elderly.

Keywords: Aging, Physical training, Arginine, Antioxidant