تأثیر هشت هفته تمرین ترکیبی و مکمل دهی آل-آزئین بر سطح
پلاسماتی مشتق اکسیده‌ای داکسی‌گوانوزین (OHDG-8)
مالونی‌دی آلدهید و ظرفیت تام آنتی اکسیدانی مردان سالم‌اند
(مدل سازی چند متغیره طولی)

ندا کیلانی ۱، علی اسماعیلی ۱، دکتر روح‌الله حق‌شناش ۲

۱) گروه آمار و اپیدمیولوژی، دانشگاه بیشahr، دانشگاه علوم پزشکی و خدمات بهداشتی – درمانی شهید بهشتی
دوره بیستم، شماره ۴، صفحه‌های ۱۹۵–۱۹۶ (مهر – آبان ۱۳۹۷)

چکیده
مقدمه: سالمانی فرآیندی زیست شناختی است که با تجمع آسیب‌های اکسیدانی به مولکول DNA همراه است. از آنجا که فعالیت‌های ورزشی و استفاده از مکمل‌های غذایی نقش ملی در کاهش عوارض سالمانی دارند، در این مطالعه تأثیر هشت هفته تمرین ورزشی و مصرف آل-آزئین بر مصرف‌های فرآیندهای اکسیدانی کلی، مشتق اکسیده آل-آزئین (TAC) در مردان سالم‌اند مورد بررسی قرار گرفت.

مواد و روش‌ها: ۲۲ مرد سالماند با سنگین سنتی ۶۹±۱۷/۶، تمرینات و به صورت تصادفی در ۲ گروه ۱۱ نفری گروه تمرین (مردان) و گروه کنترل (مردان) به صورت تصادفی عمدی جمع‌آوری و بررسی گردیده.

روش‌های ایزوتوب‌های میکرو-/میکروژنتریپ (یو بی) از روش تحلیل کورپوراسیون و مدل‌سازی چند متغیره طولی برای تحلیل داده‌های مردان عمارت ۶۰۰BEP در سطح معناداری ۰/۰۵ با استفاده یافته‌های تحقیقات قبلی ثابت گردید، تحقیقات قبلی EP و MDA، 8-OHDG در مردان سالماند مطلقه، مقادیر EP بیشتر EP در هر سه گروه (EP, MDA, 8-OHDG) در مردان (EP, MDA, 8-OHDG)

واژگان کلیدی: سالمانی، تمرین جسمی، آل-آزئین، ضد اکسیدانی
مقدمه

سلامندی با یک کاهش در برخی از علائم دهی فیزیولوژیکی و بهبود در جمله قد و ظریفی تلقی می‌شود. در این مطالعه، سالمندی با افزایش توجه میزان 8-هیدروکسیکوئیتان (8-OHdG) ایجاد می‌شود که به علت از آسیب وارده به سلول و میوتوندری این، مربوط شناخته شده است. DNA مطالعات کارگردانی که هنگام در طول روز

3. همان رادیکال‌های آزاد قرار می‌گیرد که موجب یک فایده بیشتره آن سیستم واکنش‌زا و تورم‌زا می‌شود. با پروپنیک این گروه می‌توان با TAC DNA همراه با یکی از الکتریزیک مربوط است.

4. از بین گرفته شده و راهه آن فریاز را دو متابولیزه‌ی شدن از سلول خارج کرده و از طریق ادرار، از بین دمغ می‌شود. از دیگر نشان‌گرهای معروف (MDA) پرپروتیپاسیون در این زمینه، مانند GLDH است که همزمان با افزایش سن، افزایش می‌یابد. در مقابل کاهش شاخص تمام آنتی‌اکسیدانی (TAC) نیز چگونه توجه شده است. در همین راستا استفاده از ترجمه و روش‌های همگنازیکی از اسپرسن و عوارض مربوط آن، پیشنهاد شده است که می‌توان منجر به کاهش فشار اکسیژنی و بهبود دفاع ضد اکسیدانی بدن گردید. همچنین مقامی برای جلوگیری از کاهش توده و علل عاملی است. به علی‌رغم پیشنهاد استیقامتی نیز افزایش ظرفیت قلبی - عروقی بیماری‌های مرطوب با آن پیوسته. ۱/ 8- hydroxideoxyguanosine ۲- Reactive oxygen species ۳- Malondialdehyde ۴- Total antioxidant capacity ۵- Cadore
نمایی بر اساس یافته‌های مطالعه فاضلابیان و همکاران. میزان ضریب اثر برابر با 316/17-316/172-316/175 و با نظر گرفت Critical F=2-316/172-316/175 توان برابر 8-316/172-316/175. با استفاده از لجستیک متغیر از Repeated measures: between factor approach

درمینیفاز 3.17 316/172-316/175 316/173 316/174 316/175

گروه ترمین+دارونام (316/175) گروه مکمل (S) و گروه شاهد (C)، تقسیم شدند. معیارها و روش به مطالعه عبارت بود از: جنسیت، سن، اabama، و داشتن تمرین قدرتی در زمان مصرف سیگار و کل، مصرف مکمل‌های آنتی‌بکتریال، عدم تماشای حضور در مطالعه در فضای زمین، گروه مشابه ترمینی به طور کلی تماشای حرکتی قدرتی در زمان، رژیم غذایی 1000 میلی‌گرم، مکمل ال-آرونین هنیل غذای شرکت دارویی کارن به کد 316/173123466005. تعداد شرکت از 1000 وزارت بهداشت و درمان ایران در کسول‌های 1000

جدول 1- شدت و مدت ترمیبات همزمان در طول هشت هفته

<table>
<thead>
<tr>
<th>ترمین استقامتی (نوعی راحت)</th>
<th>حجم ترمین هوازی</th>
<th>شدت 1-RM</th>
<th>تکرار</th>
<th>جلسات</th>
<th>هفته</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-Exercise+Supplementation</td>
<td>11 11 11 11 11 11 11 11 11</td>
<td>40 40 40 40 40 40 40 40 40</td>
<td>3 3 3 3 3 3 3 3 3</td>
<td>3 3 3 3 3 3 3 3 3</td>
<td>1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>ii-Exercise+Placebo</td>
<td>12 12 12 12 12 12 12 12 12</td>
<td>45 45 45 45 45 45 45 45 45</td>
<td>3 3 3 3 3 3 3 3 3</td>
<td>3 3 3 3 3 3 3 3 3</td>
<td>2 2 2 2 2 2 2 2 2</td>
</tr>
<tr>
<td>iii-Maltodextrin</td>
<td>13 13 13 13 13 13 13 13 13</td>
<td>50 50 50 50 50 50 50 50 50</td>
<td>3 3 3 3 3 3 3 3 3</td>
<td>3 3 3 3 3 3 3 3 3</td>
<td>1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>
پیشنهاد تمرین مقاومتی شامل حرکات پرس سینه هالتر، لتس بست باز از جلو، پرس سرشانه دیبل، جلوپاژ و مانند ایستاده، یکتپت کابل، جلوپاژ مانند، پشت ران، دستگاه خوابیده و ساق ایستاده با دستگاه طراحی شده، یک هفتاه قبل از شروع پروتکل ضمن انجام آزمون‌های لازم ایام-RM آزمودنی‌ها انتخاب‌گری و مطابق جدول ۱ تمرینات ایام شد. تمرینات مواردی نیز شامل استفاده از دوچرخه ثابت بوده که در هفته اول به مدت ۱۶ دقیقه با شدت ۱۰ درصد ضربان قلب هدف آزمودنی‌ها شروع و در هفته پایانی به ۳۰ دقیقه و ۸۰ درصد ضربان قلب هدف رسیده بود.

(جدول ۱)

قبل از شروع تمرین، حین ایام اراس و پس از انیمیات
در هر جلسه شد. تمرین با اکثریت تقاضای (THR=
TAC.max-HRrest%)+HRrest
	

تامین ضربان ولتاپ ماهیسپاتی و کنترل و گرید همچنین مقدار تمرینی و
مقدار بورگ، جهت تعیین شدند و کنترل تمرین استفاده
گردید. ابتدا تمرینات مقاومتی و بعد با فاصله دیقیقه
تمربین هوازی مایل شد.

پیشنهاد جمعی آموزشی اول بخواهد، مقدار ۵ سی‌سی خون
از وید بازویی آزمودنی‌ها بخشی از شروع پروتکل تمرین و
۴۷ ساعت برای آن‌های سنتی ۲۰ دقیقه در EDTA
چاپ شده و سپس با ۲۰۰۰ دو
در دقیقه این‌فیوز و پس از جداسازی پلاسم‌‌ا از سرم
جهت اندازه‌گیری ضربان قلب و آزمایش منگری و در
۲-درجه سانتی‌گراد نکداری شد. همچنین جهت اندازه‌
گیری تغییرات بیوشیمیایی از استحالت ای‌ال‌ای‌ای‌رس (ساسخت
کشش آمریکا) و روش آزمایش‌های استفاده از کیت‌های
خصوص اندازه‌گیری کیت مخصوص ۸-
MDA حساسیت ۲۵، تاندرکی/میلی‌لیتر، کیت مخصوص
TAC
با حساسیت ۲۳۷، نانوگرم/میلی‌لیتر، کیت مخصوص
TAC

i-Barbell Bench Press - Medium Grip
ii-Wide-Grip Lat Pulldown
iii-Dumbbell Shoulder Press
iv-Wide-Grip Standing Barbell Curl
v-Triceps Pushdown
vi-Leg Extensions
vii-Lying Leg Curls
viii-Extended Calf Raises
ix-Karvon
جدول 2- نتایج تحلیل کوواریانس و آزمون تعقیبی سیبادا برای متغیرهای TAC و MDA 8-OHdG

<table>
<thead>
<tr>
<th>P</th>
<th>F</th>
<th>ضربت</th>
<th>متغیر</th>
<th>کروه</th>
<th>متغیر و است.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>پسس ازون میانگین (SD)</td>
<td>پسس ازون میانگین (SD)</td>
<td></td>
</tr>
<tr>
<td>P<0.001</td>
<td>0.02</td>
<td>2-هیدروکسی-2-دی اکسی کوارترین</td>
<td>ES</td>
<td>8-OHdG</td>
<td>0.07 (0.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(ناکورم/پی‌لی‌لیتر)</td>
<td>EP</td>
<td>MDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>مدلک</td>
<td>مدلک</td>
<td>TAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69/48/1 (0.00)</td>
<td>67/48/1 (0.00)</td>
<td>65/48/1 (0.00)</td>
</tr>
<tr>
<td>P<0.001</td>
<td>0.02</td>
<td>مدلک</td>
<td>مدلک</td>
<td>مدلک</td>
<td>TAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69/48/1 (0.00)</td>
<td>67/48/1 (0.00)</td>
<td>65/48/1 (0.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>مشابه</td>
<td>مشابه</td>
<td>مشابه</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
</tr>
<tr>
<td>P<0.001</td>
<td>0.02</td>
<td>مشابه</td>
<td>مشابه</td>
<td>مشابه</td>
<td>مشابه</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>مشابه</td>
<td>مشابه</td>
<td>مشابه</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>مشابه</td>
<td>مشابه</td>
<td>مشابه</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
</tr>
</tbody>
</table>

جدول 3- برآورد پارامترهای اندازه اثر هر کروه بر متغیرهای TAC و MDA 8-OHdG (کروه شاهد به عنوان مرجع در نظر گرفته شده است)

<table>
<thead>
<tr>
<th>کروه</th>
<th>مدلک</th>
<th>EP</th>
<th>کروه</th>
<th>G</th>
<th>ES</th>
<th>ضربت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>β (S.E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>β (S.E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>β (S.E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>β (S.E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>β (S.E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>β (S.E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>β (S.E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>-2/0 (+/0)</td>
<td>β (S.E)</td>
</tr>
</tbody>
</table>

β: مقایسه برآورد پارامترهای EP و ES. S.E: خطای معیار پارامتر. P<0.001: اختلاف معناداری بین کروه‌های همکاران.
TAC and MDA 8-OHdG in rats with and without exercise

Research

A model of alzheimer's disease was created by injecting a biomarker (8-OHdG) into the rats. The rats were then divided into two groups: one group received exercise (TAC) and the other did not. The results showed that exercise significantly reduced the levels of 8-OHdG in the rats.

Discussion

Exercise has been shown to have a positive impact on various health conditions. In the case of Alzheimer's disease, exercise has been found to reduce the levels of 8-OHdG, which is a biomarker for oxidative stress. This suggests that exercise may be a promising treatment for Alzheimer's disease.

Conclusion

Further research is needed to determine the long-term effects of exercise on the levels of 8-OHdG in rats with Alzheimer's disease. However, the results of this study suggest that exercise could be an effective treatment for this condition.
References

The Effect of Eight Weeks Concurrent Training and Supplementation of L_Arginine on Plasma Level of 8-hydroxydeoxyguanosine (8-OHdG), Malondialdehyde and Total antioxidant capacity in Elderly Men (Multivariate Longitudinal Modeling)

Gilani N1, Esmaeili A2, Haghshenas R2

1Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran, 2Department of Sport Sciences, Faculty of Humanities, Semnan University, Semnan, I.R. Iran.

e-mail: rhm@semnan.ac.ir

Received: 15/04/2018 Accepted: 13/10/2018

Abstract

Introduction: Aging is a biological process that is associated with accumulation of oxidative damage to the DNA molecule. Considering that physical activities and nutritional supplements play an effective role in reducing the effects of aging, this study investigated the effects of eight weeks concurrent training and supplementation of L-arginine on stress oxidative biomarkers, including 8-hydroxydeoxyguanosine (8-OHdG), Malondialdehyde (MDA) and Total antioxidant capacity (TAC) in elderly men. Materials and Methods: Forty-four elderly men (mean age: 67.77±4.61 years), were selected and randomly divided into four groups (n=11 each): Concurrent Training+Supplement group (ES); Concurrent Training+Placebo group (EP); Supplement group and the Control group. The Concurrent Training+Supplement and Concurrent Training+Placebo groups performed the exercise protocol of eight weeks of concurrent training, three sessions per week. Every morning, one hour before exercise training, the concurrent Training+Supplement and the supplement groups consumed 1000 mg of L-Arginine. ELISA methods were used for measurement of biochemical variables and for analysis of data we used the multivariate longitudinal model. Results: There were significant between-group differences in changes of 8-OHdG, MDA and TAC (P<0.001). OHdG and MDA in all three groups of ES (35.38%, 61.8%), EP (22.59%, 55.55%) and supplement group (14.94%, 95.3%) had a significant decrease (P<0.001). Also TAC increased significantly in the ES-(135.56%) EP-(76.21%) and the supplement group (21.27%) (P<0.001). Joint effect of training and supplementation was greater than their individual effects on 8-OHdG (β=-5.16, P<0.001), TAC (β=-2.30, P<0.001), and MDA (β=3.50, P<0.001). Also exercise per se had a significantly greater effect on responses than just supplementation. Conclusion: Findings of this study, it demonstrate that supplementation of L-arginine and combined aerobic and strength training can be used as to lower oxidative stress indices and improve antioxidant systems in the elderly.

Keywords: Aging, Physical training, Arginine, Antioxidant