چکیده
مقدمه: آدروپین یا متاپولیپسم چربی نش دارد و تاکنون در زیمن تاثیر فعالیت وریزشی آدرپوپن و آدرپوپن به انسلولین را در زنان دارای اضافه وزن مورد بررسی قرار گرفت. این آزمون در تمام مقایسه و در نظر گرفته شد. از آن زمان پس از سه ماه به سه تیپ اصلی مقایسه شد. هدف اصلی در این آزمون بودن دارای سطح مرجعی برای تحلیل های آماری به‌کار بردن این تیپ‌ها (۳۸/۶۲) و آدرپوپن (۳۹/۰۲) و مقایسه با انسلولین (۲۲/۰۳) تغییرات معنی‌دار ماه شده. آمار گزارش (۳۸/۶۲) و آدرپوپن (۳۹/۰۲) تغییرات معنی‌دار ماه شده. تغییرات میزان دارای حالت تثبیت در افزایش آدرپوپن و یا تفکر به نتایج مثبت و شدت فعالیت، تغییرات معنی‌دار در سطح آدرپوپن ماه شده.

واژگان کلیدی: آدروپین، مقاومت به انسلولین، فعالیت هوازی، کاهش وزن

مقدمه
با توجه به ارتباط تکانگه‌های چاقی و مقاوم‌های سندروم متابولیک با عملکرد بدنی از پیتیتهای ساده‌تر، در سال‌های اخیر مطالعات زیادی به بررسی آدروپین‌های درگیر در صربه غذا، اشترا و تعادل انرژی پرداخته‌اند. پیش‌تر این آدروپین‌ها که به تازگی مورد مطالعه قرار گرفته، آدروپین‌ها یا آدرپوپن توسط زن و انتظار به‌هموستات افزایش کمک‌گذاری می‌شود و سطح بالایی به‌ محل مثبت عصبی مرکزی و نیز بافت‌های محتیل مانند کبد، عضله عطقی و اسکلتی و انکلودیو گزارش شده است. آدرپوپن بی‌کلام

i- Peroxisome Proliferator-Activated Receptor- γ (PPAR γ)
ii- Carnitine Palmitoyl Transferase 1B (CPT1B)
دانلود از https://ijem.sbmu.ac.irکرده شده است. آزمون‌هایی این تحقیق شامل ۲۴ زن

i- Sanchis-Gomar F, et al 2015
ii- Sato K, et al 2017
iii- FATmax (maximal fat oxidation intensity)
اندازه‌گیری حداکثر اکسیژن مصرفی

حداکثر اکسیژن مصرفی با استفاده از تست پیش‌رونه بر روی تردمال یا تخته‌سیاهی اردای ناحیه‌ی آن باید لغزیده و در نقطه قرار گیرد. در این‌جا قرار گرفته است آزمون‌ها در یک جلیسه چهار پایه می‌باشد. آزمایشگاه‌ها و آزمون‌ها حداکثر اکسیژن مصرفی شرکت نموده و در نتیجه آزمون‌ها بعد از 5 دقیقه گرم کردن به مدت 2 دقیقه بر روی تردمال با شیب صفر درصد تردمال برای شروع آزمون از سرعت 5 کیلومتر در ساعت و با شیب 2/1 کیلومتر در ساعت به سرعت دستگاه افزوده تا تردمال به سرعت 9 کیلومتر در ساعت رسیده و سپس از 1 دقیقه دوباره به سرعت 9 کیلومتر در ساعت در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج دیجیتالی تیب شد. آزمون‌هایی درک تا 1/0 یا افزایش سرعت، هر 1 دقیقه درصد به شیب دستگاه افزوده شد تا وقتی که فرد به دستگاه رسد. در سرتاسر آزمون تمرکز کارایی تنفسی با استفاده از دستگاه کازاتیاکس (Metalayer 3B, Germany) انجام شد و ضربان قلب به طور پیوسته با استفاده از ضربان سنج D1-Rate of Perceived Exertion
ii-British Association of Sport and Exercise Sciences
مسطح پلاسما آدنزیم با استفاده از کيت (Cusabio Biotech Co, Wuhan, CN) ELISA اندازهگیری شد. بر اساس اطلاعات کمپانی سازنده میزان حساسیت کيت 29/6 پیکترام میلیلیتر و با دامنه قابل اندازهگیری 1/756-100 پیکترام میلیلیتر بود. سطح پلاسما انسولین با استفاده از کيت ELISA (ساخت سونئ) گلوزک ناشتا (میلی مول بر لیتر) انسولین ناشتا (میکروونین بر میلی لیتر) HOMA-IR را محاسبه کرد.

جدول 1- داده‌های ترکیب بدنی دو کروه آزومون و شاهد

<table>
<thead>
<tr>
<th>مشخصات</th>
<th>کروه شاهد</th>
<th>کروه آزومون</th>
<th>HOMA-IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن (کیلوگرم)</td>
<td>27/5 (4/0)/7</td>
<td>24/2 (22/8)</td>
<td>12/2 (9/9)</td>
</tr>
<tr>
<td>نامختی توده بدنی (کیلوگرم درصد)</td>
<td>3/2 (2/3)/2</td>
<td>3/2 (2/3)/2</td>
<td>3/2 (2/3)/2</td>
</tr>
<tr>
<td>درصد چربی (درصد)</td>
<td>3/2 (2/3)/2</td>
<td>3/2 (2/3)/2</td>
<td>3/2 (2/3)/2</td>
</tr>
<tr>
<td>تیتر CRP</td>
<td>3/2 (2/3)/2</td>
<td>3/2 (2/3)/2</td>
<td>3/2 (2/3)/2</td>
</tr>
<tr>
<td>تیتر فيلمین</td>
<td>3/2 (2/3)/2</td>
<td>3/2 (2/3)/2</td>
<td>3/2 (2/3)/2</td>
</tr>
<tr>
<td>تیتر CRP و فيلمین</td>
<td>3/2 (2/3)/2</td>
<td>3/2 (2/3)/2</td>
<td>3/2 (2/3)/2</td>
</tr>
</tbody>
</table>

تجزیه و تحلیل آماری
کله داده‌ها با استفاده از نرم‌افزار آماری 16-SPSS تجزیه و تحلیل شد. ابتدا تحلیل بوند تام متنگری با استفاده از آزمون کوئریکونف-امتیابنی مشخص گردید. از آنجایی که توزیع داده‌ها نرمال بود، تغییرات داده‌ها به پیش‌سپاس از تمرین در هر دو گروه محاسبه شد و سپس این تغییرات با استفاده از آزمون ت مسقل مقایسه شد. داده‌های درون‌گروهی با استفاده از آزمون تی همبسته مقایسه شد. سطح معناداری برای تحالی‌های آماری 0/05 در نظر گرفته شد.

یافته‌ها
داده‌های وزن، نامختی توده بدنی، توزیع چربی، نسبت دور کمر به بانس و نسبت آگزدنو درمول‌هاي دو کروه در جدول 1 نشان داده شده است. جدول 2 نتایج جدول 2- مقادیر میانگین و انحراف استاندارد فاکتورهای اندازهگیری شده و نتایج آزمون آماری

<table>
<thead>
<tr>
<th>فاکتور</th>
<th>رده</th>
<th>پیش آزمون</th>
<th>پس آزمون</th>
<th>به تیزری</th>
<th>درصد</th>
<th>t</th>
<th>p</th>
<th>مس ثبت</th>
<th>مشخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلوزک</td>
<td>1</td>
<td>کروه آزومون</td>
<td>90/10/4</td>
<td>89/10/4</td>
<td>0/0/0</td>
<td>2/1/1</td>
<td>1/1/1</td>
<td>9/7/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>کروه شاهد</td>
<td>26/3/3</td>
<td>9/7/5/4</td>
<td>26/3/3</td>
<td>9/7/5/4</td>
<td>0/0/0</td>
<td>2/1/1</td>
<td>1/1/1</td>
<td>9/7/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>انسولین</td>
<td>2</td>
<td>کروه آزومون</td>
<td>13/9/2</td>
<td>13/9/2</td>
<td>0/0/0</td>
<td>2/1/1</td>
<td>1/1/1</td>
<td>9/7/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>کروه شاهد</td>
<td>26/3/3</td>
<td>9/7/5/4</td>
<td>26/3/3</td>
<td>9/7/5/4</td>
<td>0/0/0</td>
<td>2/1/1</td>
<td>1/1/1</td>
<td>9/7/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>مقاومت به انسولین</td>
<td>3</td>
<td>کروه آزومون</td>
<td>27/3/7</td>
<td>27/3/7</td>
<td>0/0/0</td>
<td>2/1/1</td>
<td>1/1/1</td>
<td>9/7/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>کروه شاهد</td>
<td>26/3/3</td>
<td>9/7/5/4</td>
<td>26/3/3</td>
<td>9/7/5/4</td>
<td>0/0/0</td>
<td>2/1/1</td>
<td>1/1/1</td>
<td>9/7/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>آدرپوئین</td>
<td>4</td>
<td>کروه آزومون</td>
<td>27/3/7</td>
<td>27/3/7</td>
<td>0/0/0</td>
<td>2/1/1</td>
<td>1/1/1</td>
<td>9/7/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>کروه شاهد</td>
<td>26/3/3</td>
<td>9/7/5/4</td>
<td>26/3/3</td>
<td>9/7/5/4</td>
<td>0/0/0</td>
<td>2/1/1</td>
<td>1/1/1</td>
<td>9/7/5</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

i-Homeostatic Model Assessment
پیش آزمون
پس آزمون

نمودار 1- مقادیر پیش آزمون و پس آزمون مقاومت به انسولین در دو کروه.

آماری آماری داده‌های دو کروه مقاوت متعادلی را بین تغییرات پیش و پس از فعالیت برای گلوکز (0.01/0.0/0.0) و آدروپین پلاسمای (0.07/0.0/0.0) نشان داد که بیانگر عدم تأثیر فعالیت جاده‌های مادری است.

پیش آزمون
پس آزمون

نمودار 2- مقادیر آدروپین در پیش آزمون و پس آزمون دو کروه.

نشانگر مقاوت متعادل بین تغییرات آدروپین در کروه آزمون.
بحث

در پویه‌های حاضر برای اولین بار پاسخ جادو آدرنلین به فعالیت هوازی با حداقل اکسیداسیون چربی و در بررسی قرار گرفت. به بدل اکسیداسیون چربی در طی فعالیت هوازی زیبرشینه و در دوره بازگشت به حالت اولیه پس از فعالیت و نیز نیز آدرنلین در هموستات انرژی و متابولیزم چربی، انتظار می‌رفت افزایش متابولیزم. این پس از فعالیت هوازی زیبرشینه افزایش داشته باشد. فعالیت جادو با حداقل اکسیداسیون چربی با دلیل ماهیت عمده‌تری هوازی بر منابع مولکول‌های درون عضلانی که به عنوان اتوماتیسم مهم چربی برای اکسیداسیون به بدل آید، اکتا ۱۹۹۵ هنچند تغییرات درون گروه در گروه آزمون به صورت جداگانه در پیش و پس از فعالیت معنادار بود و افزایش قابل توجهی در درصدی نشان داد. اما در گروه نیز افزایش (۱۹۸۵-۲۰۱۵) در درصدی در طول دیرینه شنیده شد. دقت اندازه‌گیری در ارتباط متابولیزم که با گروه کسانی که همان همکاران و نقش به فعالیت بدین یک می‌باشد، افزایش دیده شد. در سلول‌های اکسیداسیون چربی به عنوان محرک قوی‌تر، دو موجب افزایش نسبی آدرنلین می‌شود که به احتساب این همکاران مشکل گروه، دو مرحله اصلی است. علاوه بر این، توزیع جریان خون از جریان خون احتسابی به سمت عضلات استکلک‌های جین علاطم ممکن است که باشد. افزایش الکتریکی خون اپتیکال است تهیه کننده با دلیل تحریک کبد و دیگر کلیه‌ها عضلات وارد جریان خون شده و امکان علاطم موجب افزایش موقتی آن شده است. اینجا افزایش تحریک انسولین می‌باشد. مطالعات اخیر در موش‌ها نشان داده است که افزایش در چنین نشان این که یک گروه می‌باشد. افزایش کلسترول و تعادل انرژی کلی بدن می‌کرده.

i- Fujie S, et al 2015
ii- Yosaee S, et al 2017
کومار و همکاران (2013) گزارش کردند که آدرپین موجب تقویت ترشح تحرکی انستولین ناشی از گلوز خون می‌شود که مکانیسم اثر آن نیز با تسهیل ورود Ca²⁺ از طریق کانال‌های کلسیم مستقل از پروتئین کیناز و فسفولیاز در سلول‌های باشی موش می‌باشد. از این امر احتمال می‌رود افزایش آدرپین بلافاصله پس از فعالیت شکی ناشی از آدرپین گلوز خون و موجب افزایش ترشح انستولین از سلول‌های باشی و متعاقب آن الزامات موارد مربوط به انستولین کرد.

با احتمال می‌رود این دیدگاه مبنای عدم تغییر متوالیت آدرپین پس از فعالیت، کوتاه بودن مدت زمان پروتکس و کم بودن انتزاع مصرفی باشد در صورتی که انتزاع مصرفی کم باشد مانع افزایش ضعیلی و کبد تغییر چندین میکروکرکوک و در چنین حالتی انتزاع انتزاعی آدرپین به وجود نمی‌آید. انتظار می‌رود که بر پروتکل فعالیت‌های طولانی‌مدت باشد مدت متوسط که معمولاً تکراری می‌باشد باشد در دوره‌های برگشت و نیز زردهای پس از فعالیت شاهد آلتا و انتزاع آدرپین بشیم.

در مطالعه حاضر، تغییرات حوزی با بسیار متساوی با حداکثر اکسیژن‌سنجی، مقایسه ای که انستولین را بلافاصله پس از آفزایش آدرپین دارد. چنین مکانیسم احتمالاً در این تغییرات نقش داشته‌اند. از جمله مکانیسم‌های احتمالی می‌توان به آدرپین پیش‌بایه پس سینوسی انسولین،10 آدرپین mRNAs متابولیک انتقال‌دهنده گلوز و آدرپین سنتز گلوز و همکاران،11 کاهش انتشار و افزایش تخلیه اسید نیتریک و آدرپین انتقال گلوز عملکرد بی‌پروتکس تغییر در ساختار عملکرد.12 اشاره کرد. این یافته از پایین‌تری تحقیقات

References


Downloaded from ijem.sbmu.ac.ir at 255 +0430 on Tuesday July 2nd 2019


Effect of Aerobic Exercise with Maximal Fat Oxidation Intensity, on Adropin and Insulin Resistance among Overweight Women

Alizadeh R¹, Golestani N², Moradi L², Rezaeinezhad N³
¹Department of Sports Science, School of Literature and Humanities, Ilam University, Ilam, Iran, ²Department of Sports Science, North Tehran Branch, Islamic Azad University, Tehran, Iran, ³Department of Sports Science, Mazandaran University, Babolsar, I.R. Iran.
e-mail: r.alizadeh@ilam.ac.ir

Abstract

Introduction: Adropin plays an important role in lipid metabolism; however, no research seems to have been done on the effect of exercise on serum adropin levels. Therefore, the present study attempted to investigate the effect of an aerobic exercise session with FATmax intensity on adropin levels and insulin resistance among overweight women. Materials and Methods: The participants, who volunteered to take part in the research through announcements, included 24 overweight women with the means and standard deviations of their age, height, and weight being 25.34±4.1 y, 163.6±4.07 cm, and 76.94±4.56 kg, respectively. The exercise group performed an acute endurance activity, while the control group rested for the same amount of time. In an acute endurance activity session, the participants ran on treadmills for 30 minutes at their FATmax intensities. Changes in the data for the two groups were calculated, before and after the activity session and then compared using independent-samples t-tests. The significance level for all the statistical analyses was set at p<0.05. Results: Results showed significant differences between the two groups in terms of insulin (p=0.030) and insulin resistance (p=0.031), but not such a difference for glucose (p=0.327) and adropin (p=0.330). Conclusion: It seems that this type of activity, despite its largely aerobic nature, simply failed to stimulate adropin, due to the effect of the control group’s fasting state on increasing adropin levels, and/or the lower duration and intensity of the activity.

Keywords: Adropine, Insulin Resistance, Aerobic Exercise, Weight Loss