راهبردهای جدید طراحی و تولید آتاناکوئست برای سیتوکین‌ها و هورمون‌ها، با تأکید بر لپین و هورمون رشد

فاطمه علی، دکتر سید حسین زرکش اصفهانی، ستاره پژوه‌های نیازهای، عباس سلیمانی، نیلفر ساسانی، روبا دانش‌آذری
گروه زیست شناسی، دانشگاه علوم دانشگاهی، نیشابور، مکانیک پیوسته، مسئول اصفهان، خیابان هزار جربی، دانشگاه
اصفهان. دانشگاه علوم دکتر سید حسین زرکش اصفهانی;

چکیده
مقدمه: آتاناکوئست به طور کلی ماده‌ای غلیظ و یا اتصال به گیرنده‌های است، که در سطح با است که در سطح با
اصل به گیرنده‌های آن سرل عضن لیگاند-گیرنده را انجام می‌دهد و باعث سه و واقعی از سرل نیشود.
آتاناکوئست در داروشناسی، تکنیکی از عمل آتاناکوئست در سطح است و با بسیاری کردن محل اتصال مانع از اتصال و
عمل آتاناکوئست می‌شود. در راه سه اصل ویژگی آتاناکوئست معمولاً از طریق آزمون و خطا و به دنبال آزمایش‌های یافته می‌گردد است. در حال حاضر با پیشرفت علم و شناسایی ساختار مولکول‌ها و روش‌های انتقال پیام امکان طراحی هورمون و هدف‌سنجی برای آتاناکوئست‌ها کاربردن مانعی به وجود آمد است. طراحی این فرآیند برای پیش‌آمده دیده‌گاه‌کلی پیوکاری
در همان‌طور که بیان شده در (1) رابطه دارو بر اساس هدف مورد نظر از می‌توان یک گیرنده باشد و (2) رابطه بر اساس
ساختار یک مولکول کریپت دارویی که می‌تواند از اتصال پیام جلوگیری کند. انتقال پیوپاکوئست در فیونترین طراحی دارد
و دچار نیروی می‌شود که به دلیل اتصال به آتاناکوئست می‌شود که آن را به مولکولی سطحی باعث تبدیلی از فعالیت آتاناکوئست و
کمرنگ میزان عوارض جانبی روز سرل عضن زدن، تبدیل می‌کند. در این مقاله موردی از انتخاب و ارائه راهبردهای جدید طراحی
آتاناکوئست برای سیتوکین‌ها و هورمون‌ها (با تأکید بر لپین و هورمون رشد به عوامل نمونه) پرداخته شده است. از آنجایی که
هورمون‌ها درای سه‌مدور هستند در شرایط فیزیولوژیک مختلف مسئولیت و سیتوکین‌ها به عنوان تنظیم‌کننده ایمنی عمل
می‌کنند، طراحی آتاناکوئست برای آنها و یا گیرنده آنها می‌تواند نقش به سریایی در درمان بیماری‌های خودیسی، اسهالی،
بیماری‌های بدخیم و غیره داشته باشد.

واژگان کلیدی: آتاناکوئست، راهبردهای طراحی، سیتوکین، هورمون

دریافت مقاله: 96/7/11-دریافت اصلاحیه: 96/12/31-ذکرش مقاله: 96/12/13

مقدمه
بسیاری از گیرنده‌های موجود در سطح بدن می‌توانند دو
حالات را در مواجه با داروهای فراهم آورند. این دو حالت در
مجموع به صورت بالا و غیربالا تقسیم‌بندی می‌شوند. بر این اساس داروهای یا مولکول‌های طبیعی و یا
سنتزی دو دسته مولکول‌های آتاناکوئست با گیرنده‌ها
کمرنگ می‌شود. بر اساس مسئولیت مولکول‌های آتاناکوئست، یکن
کردن یا آتاناکوئست یا مسئولیت کننده تقسیم‌بندی می‌شوند.
یک آتاناکوئست می‌تواند این اثرات کننده را در درمان بیماری‌های خودیسی، اسهالی، بیماری‌های بدخیم و غیره داشته باشد.
اما برای این دسته از مولکول‌ها، سخت‌ترین

فضای آتاناکوئست قرار می‌گیرد. یک آتاناکوئست مولکولی
است که باعث منعکس از نگاه گیرنده و یا مولکول
آتاناکوئست آن می‌شود. این آتاناکوئست ممکن است از
مولکول‌های طبیعی در موجود زندگی مشابه گرفته باشد و یا
یک عامل خارجی باشد. مولکول‌های آتاناکوئست می‌توانند
به دو زیر گروه آتاناکوئست‌های هورمون و یا آتاناکوئست‌های غیر‌وراثی باشد. یک
آتاناکوئست ممکن است با گیرنده می‌تواند به گیرنده اتصال و یا
تاحال به‌طور کامل به گیرنده می‌تواند به گیرنده می‌تواند در فعالیت آتاناکوئست به ناحیه فعال و یا
تاحال به‌طور کامل به گیرنده می‌تواند به گیرنده می‌تواند در فعالیت آتاناکوئست به ناحیه

فرآیند
آئوتستیک در گییرنده باعث می‌شود که تغییرات پیکریندی برای فعالیت‌های گییرنده انجام شود (پیکریندی غیرفعال). آنتاکونوئست‌های غیر استیلی به گییرنده به‌طور همزمان مفصل نشون می‌آید. اما با این حال احتمال سیستم‌های شیمیایی و آنتاکونوئست‌های فیزیولوژیکی طبیعی می‌شود. آنتاکونوئست‌های شیمیایی مولکول آنتاکونوئست را می‌پیش از این که فرصنی برای تغییرات پدیدا کند. غیر فعال می‌کند که این عمل باعث غیرفعال سازی شیمیایی انجام می‌شود. در مقابل آنتاکونوئست‌های فیزیولوژیکی باعث ایجاد روند فیزیولوژیک بر خلاف اثرات ایجاد شده به وسیله آنتاکونوئست می‌شود که در شکل ۱ قابل مشاهده است.

شکل ۱- ساختار اتصال مولکول‌های لیکاند طبیعی، آنتاکونوئست رقابتی و آنتاکونوئست غیررقابتی: (الف) جایگاه اتصال مولکول لیکاند طبیعی که شامل هورمون‌ها و تاثیرات عصبی می‌باشد. در این حالت لیکاند به صورت کامل بر روی گییرنده خود بر گییرنده متصل شده و باعث خود را به صورت می‌فشد به دم سلول منقل می‌نماید. (ب) آنتاکونوئست رقابتی، (ج) آنتاکونوئست غیررقابتی، (د) آنتاکونوئست غیررقابتی دارو ها نمی‌سند به جایگاه مقابلی بر روی گییرنده به غیر از گییرنده اتصال لیکاند متصل می‌شود و اثرات جدی آنتاکونوئست غیررقابتی به عمل می‌آورند. در این حالت آنتاکونوئست غیررقابتی به غیر از گییرنده اتصال لیکاند متصل می‌شود و اثرات جدی آنتاکونوئست غیررقابتی به عمل می‌آورند.

قسمت فعال گییرنده متصل می‌شود. یک آنتاکونوئست غیررقابتی احتمالی به پایداری پیکینگی برای فعالسازی گییرنده ندارد. بنابراین، این نوع آنتاکونوئست باعث جلوگیری از فعال گییرنده می‌شود. بر خلاف آنتاکونوئست‌های غیررقابتی باعث پیش‌بینی قسمت فعال گییرنده می‌شود.
آذرنژادی برنامه آنتانوکسیست‌های فیروپولیز و جهت موارد
اثرات افزایشی هورمون تروئید بر تعداد ضربان قلب مورد
استفاده قرار می‌گیرد. در حال حاضر انواع آنتانوکسیست‌ها به عنوان یکی از
عملکرد ویژگی‌های بیماری در دمین به کار
گرفته می‌شوند. امروزه راهبردهای مناسبی جهت طراحی
یک ترکیب آنتانوکسیست یا آنتانوکسیست با ارتباط سطح فعالیت
و کنترل میزان عوارض جانبی بر روی دیگر اجزاء موجود
زنده به کار گرفته شود. در این مقاله موردی، انواع یک
راهبردهای طراحی و استفاده از آنها جهت طراحی
آنتانوکسیست برای سیتوکینها و هورمون‌ها مورد بررسی
قرار گرفته است.

راهبردهای تولید آنتانوکسیست:

طرح‌های دارویی پهپادی و پروتئینی در دو نوع
مهم‌ترینی که مورد فلک طراحی بر اساس هدف و یا لیگاند.
ب طراحی بر اساس ساختار، در اولین مرحله قرارآید
طرح آنتانوکسیست اطلاعات از ساختار پیشین مطالعه
یا لیگاند در دسترس نیستند. در طراحی بر اساس هدف یا
لیگاند، اطلاعات ساختاری در مورد گیرنده و یا قسمی از
گیرنده که به مولکول لیگاند ملایم می‌شود، در دسترس
است. در طراحی بر اساس ساختار، تغییر ساختار و
قارنگی‌ها ساختاری فضایی مولکول مولکل دارای
می‌باشد که این اطلاعات از مطالعه ملایم بین گیرنده و لیگاند می‌شود.
در هر دو مورد، طراحی مولکولی ضرورت فعالیت و توابع ویژه به
گیرنده هدف می‌باشد.

در طراحی بر اساس هدف، یکی از اهداف تغییر محل
دقیق اتصال لیگاند به جایی اتصال آن در گیرنده است.
در طراحی دارویی انتانوکسیست به نیز بر اساس
لیگاند و هدف با روش مدل‌سازی رایانه‌ای، نمود موضع
اصلي بايد مورد توجه قرار گیرد: 1) طراحی آنتانوکسیست بر
اساس مدل‌سازی رایانه‌ای و 2) روش‌های محاسبه‌ای
که عضوی در طراحی پیش‌تر و پوشتی‌ها در روش
محاسبه‌ای نیز شامل اصلی است. در مرحله اول،
طرحی و تولیدی ساختاری مولکولی یا پیکرپذیری مناسب
و جهتگیری مولکل‌ها درک کرده یا این ساختار طراحی شده
منظر است. در مرحله دوم، آزمایش غیر از رایانه با
عنوان آنتانوکسیست اجاده شده بن ساختار مورد طراحی و
مولکل‌های در تعامل با این ساختارها محاسبه می‌شود و
از اینجا انجام آنتانوکسیست به گیرنده آن می‌شود. این عمل
زنده یک آنتانوکسیست گیرنده را به شکل نامناسب اشغال
نمی‌نماید. اینک برای دانویه‌ای فعالیت
آن‌کاتیست‌ها رایگانه در دستورالعمل است که در کاشش
کاسترول نخ تا دارد.

آنتانوکسیست‌های غیر قابلیت گیرنده:

آنتانوکسیست‌های غیر قابلیت گیرنده می‌توانند به دو دنیا
فعال و یا آنتانوکسیست گیرنده متصول شوند. یک
آنتانوکسیست غیر قابلیت گیرنده که به جایی فعال گیرنده متصول
می‌شود می‌تواند تا تماس بسیار بالا و به صورت کوالیتاوی
به این نواحی به صورت بروکسانتنیک متصول شود. این
پیوندهای بروکسانتنیک حتی در غلظت‌های بالایی مولکل
آنتانوکسیست نیز از جایی فعال گیرنده کسته می‌شوند. یک
آنتانوکسیست آنتانوکسیست غیر قابلیت گیرنده در زمانی
که گیرنده فعال به گیرنده متصول شده بستگی از عامل
شنید گیرنده بجایی به عمل می‌آورد. اینک مثل بسیار
مصرف مورد آنتانوکسیست‌های غیر قابلیت گیرنده، داروی
آسپرین انس. این عمل به صورت بروکسانتنیک آنتانوکسیست
سیگنال‌های ملکول‌های سنوازی به دوره‌های ترومبینکا
طی‌ها و انتقال آنها مهارت به عمل می‌آورد. ۷۰

آنتانوکسیست‌های غیر واگسته به گیرنده:

آنتانوکسیست‌های غیر واگسته به گیرنده به دو دنیا
آنتانوکسیست‌های شیمیایی و فیروپولیز تکسیم‌بندی
می‌شوند. آنتانوکسیست‌های شیمیایی مولکول آنتانوکسیست مورد
نظر را به واسطه نسبت آن به قطعه‌های کربن و
جذابیت مولکول غلظت می‌کند. بنابراین آنتانوکسیست تا
در زمان زیادی در دسترس باقی می‌ماند تا جایی انجام
خود به گیرنده متصول شود. پروتئین‌های یک مثل از
آنتانوکسیست‌های شیمیایی غیر واگسته به گیرنده است.
پروتئین‌های به دسته‌ای از هیپرفوناناسیون الکتروفیزیولوژی
متصل و باعث غلظت سازی این نوع خائل می‌شود. به همین
دلیل از پروتئین‌های غیر واگسته فعالیت هیپرفوناناسیون
می‌شود. ۱ آنتانوکسیست‌های غیر واگسته به گیرنده فیروپولیزی
می‌توانند به دسته مانع‌گیرنده شوند که پاسخ
فیروپولیزی کننده برای آنتانوکسیست‌ها اجاده می‌شود و هم
باوع غلظت شدن غیر واگسته دیگر می‌شود که منجر
به مصرف آنتانوکسیست‌های فیروپولیزی بر آنتانوکسیست‌های
در دمین هیپرفوناناسیون مورد نظر را دارد. مثالی از این نوع آنتانوکسیست‌ها در دمین هیپروفورمیدیسم
مورد استفاده قرار می‌گیرد. آنتانوکسیست‌های بنا
۱- طرایح داروی اساس لیکاند

زمینه که استخراج ساختمان زیرمشتاق به و با انتخاب می‌شود. در نظر گرفته می‌شود که گزینه این

۲- طراحی داروی اساس ساختار

طرایحی بر پایه ساختار راپتردانی است که در طراحی

۳- طراحی مجلس دامای مولکول‌های پروتئینی نیز انجام شود. فرض

۴- مطالعه der نامشده است. این طراحی همبندی می‌تواند بر

۵- نهایت همبندی است که همبندی روش‌های ضروری برای

پایدارترین پیکردنی انتخاب می‌شود. در نظر گرفته این

دو نکته روش‌های مختلفی جهت طراحی آنتاگونیست‌ها

در این روش از ابزارهای آماری و تجزیه و تحلیل ساختارها

برای بردن به ساختار لیکاندها و اثرات وابسته به آنها

استفاده می‌شود. 

۶- i-Pharmacophore

۷- ii-Quantitative structure-activity relationship

iii-Nuclear magnetic resonance
iii - Extended protein mapping with user-selected probe molecules
iv-G-CSF: Granulocyte-Colony Stimulating Factor

...a p p i n g w i t h u s e r - s e l e c t e d p r o b e 
molecules

iv-G-CSF: Granulocyte-Colony Stimulating Factor

...a p p i n g w i t h u s e r - s e l e c t e d p r o b e 
molecules

...a p p i n g w i t h u s e r - s e l e c t e d p r o b e 
molecules
در سال 2007 یک ادبی کاربرد موفقیت آمیز آنتی‌بادی مونوکلونال به صورت آنتی‌گروتوستیپی گیرنده‌ای لیپئین در آنیسی در شرایط in vivo را گزارش کرد. از سوی دیگر پیشرفته‌هایی اخیر در دزمیتیته به تغییرفیتیماته لیپئین با ویژه‌ی آنتی‌گروتوستیپی و زیت چربی‌های مکانیک‌خوانده می‌شود. این اشکال حاصل از راهبردهای جدیدی که در حال ارائه‌اند، نشان‌دهنده ایجاد گرفته در این گیرنده‌ای هورمون نیز تشویه‌بالایی با تولید کردن‌های خانواده اینترنتی‌گری و عامل معرفی کلنی‌گروتوستیپی نشان می‌دهد. این روش لیپئین بعنوان سایکسی‌کنونگ یا ویژگی‌های سه‌گروسوستیپی نیز شناخته می‌شود. این که به طور عده‌ای آموزش‌دهنده‌ی آنتی‌گروتوستیپی در نظر گرفته شود. به طوری که فاصله‌ای و همکاران توانستند

کردن‌های هورمون تشویه‌بالایی با تولید کردن‌های خانواده اینترنتی‌گری و عامل معرفی کلنی‌گروتوستیپی نشان می‌دهد. این روش لیپئین بعنوان سایکسی‌کنونگ یا ویژگی‌های سه‌گروسوستیپی نیز شناخته می‌شود. این که به طور عده‌ای آموزش‌دهنده‌ی آنتی‌گروتوستیپی در نظر گرفته شود. به طوری که فاصله‌ای و همکاران توانستند

i-Small-angle X-ray Scattering (SAXS)
ii-Site-directed mutagenesis
iii-Verploegen
iv-Samson
v-Grasso
طراحي آنتاگونیست برای هورمون رشد

هورمون رشد هورمونی که یک یا چند متشکل از ۱۱۱ اسید آمینه است که در ساختار آن دو بیوندی سولفیدی وجود دارد. ساختار هورمون رشد از چهار مختلف جانوان متفاوت است. وجود این چهار نوع متفاوت منجر به ایجاد اختلالات گسترده یافته و طراحی آنتاگونیستی هورمون رشد که از مطالعات بشری و تحقیقات سایر غذایی‌های و محل ساختار و ترشح چندین هورمون است که بیشتر عمل تحرک و تنظیم ترشحات سایر غذایی‌ها را به ضعف دارد و به همین جهت آنها را هورمون‌های محرک می‌نامند. عوامل موتور در ترشح هورمون رشد غذایی عضلانه چربی یا منجر به افزایش بیکاری کاهش اثر مصرف غذایی چربی می‌کند. بنابراین، برای جلوگیری از مصرف غذایی چربی، نیاز به کاهش قدرت استفاده از سایر چربی‌های غذایی دارد. این تحقیق از تاثیر چربی‌های غذایی بر سایر چربی‌های غذایی استفاده کرده است.

- ۳ نانوایه و آنتی‌بیوتیک‌های کیرنده دیتی: استفاده مستقیم از آنتی‌بیوتیک‌های خاص کاهش کردن فعالیت تکانگی و اختصاصیات باعث رشد می‌شود.

- برای قطور کردن یک هورمون از پره‌ها و ریشه‌ای آنتاگونیستی برای لیپیک به عنوان گروه‌ی هورمونی درمانی جهت بیماری‌های خودمناک و راکت‌های اختلالات گسترده یافته و طراحی آنتاگونیستی هورمون رشد از مطالعات بشری و تحقیقات سایر غذایی‌های و محل ساختار و ترشح چندین هورمون است که بیشتر عمل تحرک و تنظیم ترشحات سایر غذایی‌ها را به ضعف دارد و به همین جهت آنها را هورمون‌های محرک می‌نامند. عوامل موتور در ترشح هورمون رشد غذایی عضلانه چربی یا منجر به افزایش بیکاری کاهش اثر مصرف غذایی چربی می‌کند. بنابراین، برای جلوگیری از مصرف غذایی چربی، نیاز به کاهش قدرت استفاده از سایر چربی‌های غذایی دارد. این تحقیق از تاثیر چربی‌های غذایی بر سایر چربی‌های غذایی استفاده کرده است.

- برای قطور کردن یک هورمون از پره‌ها و ریشه‌ای آنتاگونیستی برای لیپیک به عنوان گروه‌ی هورمونی درمانی جهت بیماری‌های خودمناک و راکت‌های اختلالات گسترده یافته و طراحی آنتاگونیستی هورمون رشد از مطالعات بشری و تحقیقات سایر غذایی‌های و محل ساختار و ترشح چندین هورمون است که بیشتر عمل تحرک و تنظیم ترشحات سایر غذایی‌ها را به ضعف دارد و به همین جهت آنها را هورمون‌های محرک می‌نامند. عوامل موتور در ترشح هورمون رشد غذایی عضلانه چربی یا منجر به افزایش بیکاری کاهش اثر مصرف غذایی چربی می‌کند. بنابراین، برای جلوگیری از مصرف غذایی چربی، نیاز به کاهش قدرت استفاده از سایر چربی‌های غذایی دارد. این تحقیق از تاثیر چربی‌های غذایی بر سایر چربی‌های غذایی استفاده کرده است.
دهانه هورمون در رشد بدن با دخالت پروتئین واسطی به نام ترکیب یک اثر مشابه اثر نیست. این پروتئین واسط در باره درون کوکی های خاص هستند. زیادی از زیست سوموتکست گردیده که یکی از این پروتئینها از ماده E.coli, انتخاب زنده و پلیرهای پلی تکتیک به صورت سهپیو ژن هورمونهایی را در پلورما و هورمونی از کلرید شبکه‌های مجزا تولید می‌کند.

Pegvisomant

جهت بررسی اولیه عملکرد جدایگانه این دو مولکولی می‌باشد و تلود افزایش صورت گرفت و نتیجه عمل کاهش رضایت و دیگر عوامل واکنش به هورمون رشد بوده.

مکان با تاریخ و هیپوتاتاموس ترجمه می‌شود. یکی از نمونه‌های مهرکننده است که به تاریخ هورمون گروهی از گروه هورمون رشد و هورمون محرک بروئی‌های می‌باشد. هورمون هورمونی از ماده E.coli, انتخاب زنده و پلیرهای پلی تکتیک به صورت سهپیو ژن هورمونهایی را در پلورما و هورمونی از کلرید شبکه‌های مجزا تولید می‌کند.

mutagenesis

مانند به طراحی و تلود افزایش صورت گرفت و نتیجه عمل کاهش رضایت و دیگر عوامل واکنش به هورمون رشد بوده.

Pegvisomant

مکان با تاریخ و هیپوتاتاموس ترجمه می‌شود. یکی از نمونه‌های مهرکننده است که به تاریخ هورمون گروهی از گروه هورمون رشد و هورمون محرک بروئی‌های می‌باشد. هورمون هورمونی از ماده E.coli, انتخاب زنده و پلیرهای پلی تکتیک به صورت سهپیو ژن هورمونهایی را در پلورما و هورمونی از کلرید شبکه‌های مجزا تولید می‌کند.
توسعه آنتانوکوتین سیتوکین: سیتوکین‌ها به گیرنده‌ها اتصالی اختصاصی در برو ری غشاء سلول‌های هدف منصوب می‌شوند و یا تحريك سیاره‌ای انتقال‌دهنده پیام در نهایت موجب تغییر بیان در سلول‌های هدف گشوده می‌شود. از این روش انتقال در اتصال سیتوکین به زیراگاه‌های گیرنده‌های سیتیکالیکنگ، روشی مفيد برای توسعه آنتانوکوتین با پتانسیل درمانی است. این امر با احتمال راهبردهای شناختی ممکن است در قبیل ارائه افزایش

1- تیم‌های سیتوکین‌های نخستین بایسته

در این روش آنتانوکوتین سیتوکین به وسیله ایجاد چش در خود سیتوکین و در محل اتصال سیتوکین به گیرنده آن تولید می‌شود. به طوری که سیتوکین قادیر به اتصال به زیر واحد گیرنده هستند. اما قادر به اتصال به زیراگاه‌های دیگری نیستند و این چش یافته‌های آنتانوکوتین هدف ماهی گیرنده و تیم‌های سیتوکین‌های مادرکرده سیتیکالیکنگ قدرت کمیک ممکن است نجیر به فعال شدن غیرفیوزیولوژیک گیرنده

2- سیتوکین‌های پیتودی و غیرپیتودی

مولکول‌های غیرپیتودی کرک و احتمالاً خوراکی فعل به عنوان آنتانوکوتین‌های ابتدال در نظر گرفته می‌شوند. با وجودان، یک اثر از اثرندازتها آنتانوکوتین‌های موثر تولید شده در ایزوئیزولون A، که با داخل در مسیر انقلاب پیام 5-IL-4 به گیرنده آن منصوب می‌شود.

3- آنتانوکوتین‌های پیتودی و غیرپیتودی

علاوه بر این تعدادی از پیتودی‌ها گیرنده فعالیت زیستی سیتوکین‌ها کارشناسی است. این پیتودی‌ها به یکی از دو روش زیر عمل می‌کنند: آن‌ها به طور مستقیم به گیرنده سیتوکین منصوب شده و لی منطقه غزارنده کردن سلول‌های نیستند و دست دوم به طور مستقیم به یک سیتوکین منصوب می‌شوند و به‌طور فعال آن را موجب می‌شود. بهترین

4R) سی tokinin IL-4) می‌شود که همگونی فعالیت زیستی ندارد و بطور کالر سی tokinin IL-6) گفت آنتانوکوتین‌ها منابع اکثریت در طور کلی می‌توان گفت آنتانوکوتین‌ها منابع اکثریت در طور کلی
نتيجه‌گیری

با توجه به مطالعات ارائه شده در بخش مقدمه و راه‌بردهای معرفی‌شده در جهت طراحی یک آنتاکونیست مناسب بر غیره‌کینده‌ای موجود در سطح بدن به آسانی می‌توان دریافت که طراحی آنتاکونیست در محیط‌های شبیه‌سازی شده نتایج اساسی در طراحی داروی بر عهده دارد. پیچیدگی‌ها و انعطاف‌های موجود در طراحی دارو بر اساس ساختار و دانگی مولکولی و هپتین طراحی آنتاکونیستی بر اساس لیکان مورد نظر این امکان را به مقمح میدهد که به واسطه این فاکتور در حالت پیشرفت بتواند از یک اسکلت دارویی طراحی شده ساختارهای را بر علیه گیره‌نها مختلف مانند گیره‌نها برخی ساتیکن‌ها و برخی هورمون‌ها مانند لیپوئید و پر علیه خون سایکتیکاکن ترشح شده مشخص شود. این حقیقت‌های غیرقابل انکار است که طراحی داروهایی بر سری انستیتوهای را در حال حاضر انتخاب‌خانی از آنتاکونیستها و آنتاکونیستها برای تولید آنتاکونیستها و سیستون‌ها در سطح است قرار گرفته است. این نتایج به گیره‌نها توانسته به برای سبک‌ریپن و به یک‌پایی برخی‌نها گیرنده‌ای از سیستون‌ها به یک و می‌تواند در شرایطی و بیماری‌هایی که ناشی از دیگری یک هورمون یا سیستون‌ها مشخص است را قرار کنند.

آنتاکونیستها که با روش‌گفتگوها برای طراحی و تولید سیستون‌ها می‌تواند این انتاکونیست با بیماری بالای درمان تعدادی از بیماری‌ها در بزرگ و وجود دارد. با توجه به موضعی درمانی آنها و ارشف افزوده‌ی فرانگان، که باید تفاوت‌های زیادی در دنیا در حال کار در تولید انتاکونیست‌های جدید باشد. به علت قطعی در آینده نه نه نزدیک دور نسل جدیدی از انتاکونیست‌ها برای درمان بیماری‌های مختلف در سطح بشر قرار خواهد گرفت.

مهارت‌کننده مشخص شده در این زمینه آنتاکونیست کردن (IL-1Ra) IL-1 فعالیت دارد. انتخاب این آنتاکونیست بر هر انتاکونیست انتقال IL-1Ra را مهار می‌کند. تصویر بر این است که تولید این آنتاکونیست نقش مهمی را در تنظیم شدت پاسخالتهاب ایفا می‌کند. این مولکول کننده است و به تازگی به عنوان یک درمان بالقوه برای بیماری‌های التهابی مزمن مورد بررسی قرار گرفته است. در جدول ۱ آنتاکونیست طراحی شده برای TNF-α و IL-1 با بکارگیری راهبردهای فوق پرداخته است زیرا می‌تواند از بیماری‌های التهابی و روماتوئیدی ترکیبات ضد فاکتور تکررده‌های تومور (TNF) و ضد اینترولین ۱ موتور از هم اکنون به عنوان اولین خط دفاعی برای بیماری‌های این‌گونه آسیب‌های بیشترگیران شدیدان.

جدول ۱- فهرست انواع آنتاکونیست‌های طراحی شده

<table>
<thead>
<tr>
<th>انواع آنتاکونیست</th>
<th>ترکیب</th>
<th>زیرگروه</th>
</tr>
</thead>
<tbody>
<tr>
<td>آنتاکونیست‌های سیستون‌های ترکیبی</td>
<td>INFliximab, Adalimum (I)</td>
<td>INFliximab, Adalimum (II)</td>
</tr>
<tr>
<td>آنتاکونیست‌های سیستون‌های ترکیبی</td>
<td>Etanercept (G)</td>
<td>Etanercept (H)</td>
</tr>
<tr>
<td>آنتاکونیست‌های سیستون‌های ترکیبی</td>
<td>Triazoloquinoxalines (J)</td>
<td>Triazoloquinoxalines (K)</td>
</tr>
<tr>
<td>آنتاکونیست‌های سیستون‌های ترکیبی</td>
<td>Infliximab, Adalimum (L)</td>
<td>Infliximab, Adalimum (M)</td>
</tr>
<tr>
<td>آنتاکونیست‌های سیستون‌های ترکیبی</td>
<td>INFliximab, Adalimum (N)</td>
<td>INFliximab, Adalimum (O)</td>
</tr>
<tr>
<td>آنتاکونیست‌های سیستون‌های ترکیبی</td>
<td>INFliximab, Adalimum (P)</td>
<td>INFliximab, Adalimum (Q)</td>
</tr>
<tr>
<td>آنتاکونیست‌های سیستون‌های ترکیبی</td>
<td>INFliximab, Adalimum (R)</td>
<td>INFliximab, Adalimum (S)</td>
</tr>
</tbody>
</table>

i - Interleukin-1 receptor accessory protein
ii - Interleukine-1 receptor type I

ملاحظه: در حال حاضر روش درمانی آنتاکونیست‌های این انتاکونیست در حال درمان در بیماری

استاندارد در روماتوئیدی هستند. آنتاکونیست‌های اینترولین ۱ در درمان در بیماری آرتریت روماتوئیدی بکار گرفته شده‌اند و استفاده آن‌ها موجب بهبود قدر مختصر سلول‌های بتا در بیماران

دبی‌نتی می‌گردد.
References

18. Chen C. YC. Chemoinformatics and pharmacoinformatics approach for exploring the GABA-A agonist from Chinese herb suanzaoren. Journal of the Taiwan Institute of Chemical Engineers 2009; 40: 36-47.


45. Goosens k. Use of Antagonists orAgonists of Growth Hormone or Growth Hormone Receptor to Prevent or Treat Stress-Sensitive Psychiatric Illness. Molecular Psychiatry 2014; 19: 1284-94.


57. Mandrup-Poulsen T. Interleukin-1 Antagonists and Other Cytokine Blockade Strategies for Type 1 Diabetes. the Review of Diabetic Studies 2012; 9: 338-47.


67. Kok YY, Ong HH, Say YH. Interleukin-1 Receptor Antagonist and Interleukin-4 Genes variable number tandem repeats are associated with adiposity in Malaysian subjects, Obesity 2017; 1-8.
Review Article

New Strategies for Production and Designing of Cytokines and Hormones Antagonists, Focusing on Leptin and Growth Hormone

Elmi F, Zarkesh- Esfahani H, Pazhouhnia S, Daneshazari R, Sasani N, Soleimani A

Deparment of Biology, Science Faculty, Isfahan University, Isfahan. I.R. Iran

e-mail: s.h.zarkesh@sheffield.ac.uk

Received: 03/10/2017 Accepted: 17/03/2018

Abstract

Introduction: Antagonist is a chemical substance or drug that has the ability to bind to the cell receptor by the ligand-receptor process, but is not able to trigger a response. Antagonists, pharmacologically, mimic the action of an agonist on the cell. It prevents, however, the attachment and function of the agonist or allows the binding but not the appropriate function by blocking the binding site of the agonist on the cell surface. In the past, antagonist production required much experimentation, trial and error whereas today, with advances in science and identification of molecular structure and signaling techniques, the possibilities of intelligent designs for antagonists in the shortest time possible have arisen. This process is based on two general viewpoints that include: Drug design based on target that can be a receptor or based on the structure of a small molecule as a drug that can block the signaling. The basic structure of an antagonist changes during drug design and hence there could be an antagonist with high levels of activity and minimal side effects. This review studied the new strategies of designing antagonists for cytokines and hormones (focusing on leptin and growth hormone). Since hormones play multiple roles in different physiological conditions and cytokines act as immune modulators, designing antagonists for them or their receptors can play an important role in the treatment of autoimmune-inflammatory-and neoplastic diseases.

Keywords: Antagonist, Design strategy, Cytokine, Hormone