اثر تجویز خوراکی نیترات سدیم با شماره سلول‌های خونی در موش‌های صحراپیون چاق و مبتلا به دیابت نوع 2

چکیده
مقدمه: دیابت نوع 2 یکی از شایع‌ترین بیماری‌های متابولیک است. نیترات به عنوان داروی ضد آنزیمی برای دیابت مطرح است. پژوهش‌ها نشان داده‌اند که تجویز نیترات به نیتروس اکساید تولید کننده کلروهی‌های فیزیولوژیکی عمل می‌کند. در این مطالعه به منظور بررسی اثر نیترات سدیم با شماره سلول‌های خونی در موش‌های دیابت نوع 2 جهت تحقیق اثرات نیترات سدیم در مدار سلول‌های خونی در پایان مطالعه انجام گرفته است.

میدان دارویی در موش‌های دیابتی مبتلا به دیابت نوع 2 مصرف که به دیابت منجر به کاهش خون‌ریزی و اثرات زیادی در برقراری برابری از آلترماتوری خونی تدریس و حتی با کاهش تعادل نتیجه‌گذاری می‌کرد است راه‌های داشت باشد.

واژگان کلیدی: دیابت نوع 2، نیترات، شماره سلول‌های خونی، میکرو سلول‌های نازک

درصد در جمعیت بالغ 25 تا 35 ساله گزارش شده است که حدود 2 میلیون نفر را شامل می‌شود. ابتلا به سلول‌های بتای پانکراس می‌تواند با انسولین در اندام‌های هدف افراد مبتلا به دیابت نوع 2 موجب آنزیم‌های غلط در خون می‌شود.

1) NO- نیتروس اکساید

در حال حاضر، 245 میلیون نفر در جهان دیابت دارند که بیش از 90 درصد آن‌ها دارای دیابت نوع 2 هستند. سه‌کنین برآورد می‌شود که حدود 179 میلیون نفر از مبتلایان به دیابت، از بیماری خون آگهی نابینا. پیش‌بینی می‌شود که تا سال 2040، تعداد مبتلایان به دیابت به 624 میلیون نفر برسد.

روند بر بخش جهانی چالش و استفاده از ریپهای پرکارالی منجر به افزایش تعداد بیماران مبتلا به دیابت نوع 2 شده است. در ایران، شیب دیابت نوع 2 از 1990-1997 تا 2008-2009 افزایش یافته است.

1 Nitric oxide
مواد و روش‌ها
در این مطالعه از 8 سر موش صحرایی تر نژاد ویستار با میانگین وزنی 170-200 گرم استفاده شد. موشها در دماه 22 درجه سانتی‌گراد و در شرایط چرخه‌ناریکی - روش‌نامه 12 ساعتی تغذیه شدند. موارد اخلاقی در مورد کار با حیوانات آزمایشگاهی رعایت شد و مطالعه به‌این ترتیب کمیته سازمانی اخلاق در پژوهشکده علوم غدد درون‌ریز و متابولیسم دانشگاه علوم پزشکی شهید بهشتی رسید. (کد I.R.SBMU.ENDOCRINE.REC.1395.198)

جراحی‌ها 8 گروه (8 سر موش در هر گروه). شامل 1) گروه کنترل 2) گروه دیابتی، 3) گروه پایدار یک‌پله‌ای و 4) گروه دیابتی پایداری همزمان با دیابتی دیگری که به مدت 2 هفته قطع دیابتی رود. (CN250) (8 گروه موش در هر گروه اندازه‌گیری گردید. جمعاً 200 گرم دیابتی سدیم دریافت کردند. 250 گرم کنترل 2 کنترل دیابتی دیابتی 2 میلی‌گرم دیابتی سدیم دریافت کردند. منابع نگهداری گروه‌ها و مارک رنگ، گلکوز، توده‌ها و فشار خون مارک‌های مختلفی را در به‌کارگیری تغییر دادند. تغییرات متابولیکی گروه‌ها با استفاده از سیستم سبک‌سنجی سه‌گروهی و بررسی مراحل تقویت NO تولید و مقدار دیابت می‌تواند به عنوان یکی از اثرات تحت‌الثباتی در برابر دیابت دارد. این مطالعات حاوی اثرات ماده‌های مسیر سیگنال‌ها و سیگناپاتر تقویتی می‌کند و مقاومت به انسولین و عوارض دیابت را کاهش می‌دهد.

حدود ۳۰۰ درصد انرژی دیابتی کمک‌جویی دارد که ناشی از اختلال عملکرد کلی، آلومینوسوری و نقص ارتباط‌پذیری است. در مبتلا به دیابت نوع ۲ تعداد پلاکت‌ها و توتروفیل افزایش می‌یابد. در جراحی و اختلال تحلیل گلوکز تعداد گلوکولهای سه‌فازی افزایش می‌یابد که با فشار خون بروز دیابت نوع ۲ هم‌بوده است. این مطالعات همچنین تأثیر سیستم سبک در کاهش تغییرات MCV (متوسط حجم گلوله‌های قرمز) و افزایش MCHC (متوسط حجم گلوله‌های قرمز) (متوسط گلکوپولی‌ها) و افزایش Hb (متوسط گلکوپولی‌ها) در گروه‌های دیابتی در پایین‌ترین مقدار می‌باشد.

i-Endothelial NOS (eNOS)
ii- Mean Corpuscular Volume
iii- Mean Corpuscular Hemoglobin Concentration
iv- Mean Corpuscular Hemoglobin
برون آزمونی برای تام پارامترها کمتر از ۳ درصد بود.

(نمودار ۸)

اندازه‌گیری گلوکز به روش رنگسنجی آنزیمی (کیت شرکت پارس آزمون، ایران) و با استفاده از دستگاه خوانشگر آنالیز صورت گرفت. ضرایب تغییرات درون آزمونی و برون آزمونی برای اندازه‌گیری گلوکز به ترتیب ۰/۵ درصد و ۵/۵ درصد بود.

نمودار ۱- نمای کلی از مراحل اجرای مطالعه.

CBCii

یافته‌ها

diabetic و مبتلا به دیابت در پایان مطالعه، داده‌ها بیانگر میانگین‌گیری (p<0/04) معیار.

* ضرایب تفاوت معنی‌دار در مقایسه با گروه کنترل است

(نمودار ۲، ۳)

در پایان مطالعه، میزان قند خون موش‌های دیابتی بالاتر از موش‌های کنترل بود. توزیع نتیجت سدیم در گروه‌های کنترل اثری بر قند خون حیوانات نداشت، اما در موش‌های دیابتی سبب کاهش معنی‌دار (p<0/3) گلوکز خون شد.

نمودار ۳- تأثیر نتیجه‌ها بر وزن نتیجه‌نهایی سدیم در گروه‌های کنترل.

D

نمودار ۴- تأثیر نتیجه‌ها بر وزن نتیجه‌نهایی سدیم در گروه‌های کنترل.

بطور معنی‌دار (p<0/04) بیشتر از گروه کنترل (C) بود.

تحلیل آماری

تحلیل آماری داده‌ها با نرم‌افزار Graph Pad Prism (Version 6) انجام شد. داده‌ها به صورت کمی پایدار که به صورت میانگین±انحراف معیار (ANOVA) گزارش شدند. تحلیل واریانس یک طرفه در نظر گرفته شد.

\[p < 0.05 \] یعنی سطح معنی‌داری در نظر گرفته شد.

نکته‌ها

i- Ethylene diamine tetra acetic acid (EDTA)

ii- Complete blood count
مطالعه همبستگی الکترولیت‌ها در خون نرمال (A) و مبتلا به انسولین (B) در فریم همبستگی الکترولیت‌ها در خون نرمال (C) و الکترولیت‌ها در خون مبتلا به انسولین (D) همبستگی الکترولیت‌ها در خون نرمال (E) و الکترولیت‌ها در خون مبتلا به انسولین (F) همبستگی الکترولیت‌ها در خون نرمال (G) و الکترولیت‌ها در خون مبتلا به انسولین (H) همبستگی الکترولیت‌ها در خون نرمال (I) و الکترولیت‌ها در خون مبتلا به انسولین (J) همبستگی الکترولیت‌ها در خون نرمال (K) و الکترولیت‌ها در خون مبتلا به انسولین (L) همبستگی الکترولیت‌ها در خون نرمال (M) و الکترولیت‌ها در خون مبتلا به انسولین (N) همبستگی الکترولیت‌ها در خون نرمال (O) و الکترولیت‌ها در خون مبتلا به انسولین (P) همبستگی الکترولیت‌ها در خون نرمال (Q) و الکترولیت‌ها در خون مبتلا به انسولین (R) همبستگی الکترولیت‌ها در خون نرمال (S) و الکترولیت‌ها در خون مبتلا به انسولین (T) همبستگی الکترولیت‌ها در خون نرمال (U) و الکترولیت‌ها در خون مبتلا به انسولین (V) همبستگی الکترولیت‌ها در خون نرمال (W) و الکترولیت‌ها در خون مبتلا به انسولین (X) همبستگی الکترولیت‌ها در خون نرمال (Y) و الکترولیت‌ها در خون مبتلا به انسولین (Z)
در پایان مطالعه، تعداد نوترافیفیلاها در حیوانات دیابتی
بالاتر از کنترل بود. تجویز نیترات سدیم در کرده‌های کنترل
اثر بر تعداد نوترافیفیلاها نداشت. اما در موش‌های دیابتی
دوره 100 سبب کاهش میانگین تعداد نوترافیفیلاها
(شیمی‌وروری) و دوره 200 اثری نداشت.

داده‌های نشان داد که تعداد لنفوسیدت در پایان مطالعه در
حیوانات دیابتی پایین‌تر از کنترل بود. تجویز نیترات سدیم
در کرده‌های کنترل اثر بر تعداد لنفوسیدت‌ها نداشت. اما در
موادی دیابتی، دوره 100 میلی‌گرم در لایه نیترات سدیم
شیمی‌وروری و دوره 200 اثری نداشت (نمودار 6). تعداد پلاک‌ها در
تمام گروه‌ها تفاوت معنی‌داری را نشان نداد (نمودار 7).

بحث

نتایج این مطالعه نشان داد که تجویز نیترات سدیم به
مدت گذشته در موش‌های دیابتی سبب کاهش وزن بدن، نگهداری,
خون، همتوکروم و تعداد نوترافیفیلاها می‌شود. تعداد کل
گلوبول‌های سفید و لنفوسیدت‌ها انزایش می‌آمرد بر تعداد
گلوبول‌های قرمز، غلظت هموگلوبین و تعداد پلاک‌ها ندارد.

تجویز نیترات در دوره‌های 100 و 250 میلی‌گرم در لیتر،
وزن موش‌های دیابتی را کاهش داد. همچنین با این نتیجه
گزارش شده که تجویز نیترات در موش‌های صحرایی نر
مبیلیا به دیابت نوع 2 موجب کاهش وزن و در موش‌های
سریع چاق موجب کاهش توده دینی می‌شود. در
مطالعه دیگر، تجویز نیترات و نیترات سدیم سبب کاهش
وزن در موش‌های چاق ZSF1 شد. نیترات و نیترات مربوط
برای تولید NO از سبب نیترات - نیترات - NO به
کمک آنزیمی استنل کننده NO هستند. موجب افزایش
گوانوزین مونوفسفات خلولی (GMP) می‌شود و بیولوژی
میتوکندری را تحریک می‌کند که میتواند موجب کاهش وزن
شد.

در مطالعه حاضر، تجویز نیترات سدیم در موش‌های
دیابتی موجب کاهش گل‌گریخ خون شد. این یافته مطالعه با
مطالعه غربی و مکانیک اندازه تجویز نیترات سدیم در
موادی صحرایی نر می‌بسته به دیابت نوع 2 اثبات
و

نمودار 7- تأثیر نیترات سدیم به دوز 100 و 250 میلی‌گرم
در لیتر بر تعداد کلین دیسپار خون (A)، تعداد نوترافیفیلا
خون (B) و تعداد لنفوسیدت خون در موش‌های صحرایی

-205-234
کاهش اکسبیوز در خون. به طور غیرمستقیم بر مغز استخوان اثر کرده و تولید ارتروپورین را افزایش می‌دهد. تغییرات ماتورپسی‌کی به سبب مولکول‌های ممزگی با نیترات دیده می‌شود. می‌تواند به شکل کمکوئنی فلایزی جریان در تعادل قدرت‌های قرمز افزایش یابد. به‌نتیجه می‌رسد مواجه با نیترات می‌تواند سرکوب استخوان شود.

در این مطالعه، میزان ماتورپسی در گروه دیابت باید از گروه کنترل بوده و تجربی نیترات سدیم در دو میلی‌گرم.11 هم جهت این مطالعه، اسمر.10 همکاران اثر دوز پایین نیترات (5 میلی‌گرم در لیتر و روز) در مولکول اسپراپونی (5 میلی‌گرم در لیتر و روز) در هر جفت ایمن ولیکن نیترات همکاریت افزایش یافته در طی هیپوکسی را کاهش می‌دهد. اما در دوزهای بالاتر (10 میلی‌گرم در لیتر و روز) به طور عکس عمل می‌کند. نیترات ارتروپورین اثر دارد و مهار می‌کند نیترات ارتروپورین در کبد اکسیژن و تغییرات قلبی در ماتورپسی و ماتورپسی در یک مدل می‌کند. نیترات در دوزهای بالاتر، تولید ارتروپورین کلی و افزایش می‌دهد. این نتیجه بافت به اکسبیوز پاسخ داده شد.11

MCV در این مطالعه، تجویز نیترات اثری بر مقدار می‌کند.12 MCHC، MCH همکاران اثر نیترات با دوز 500 میلی‌گرم به ازای کبود و 50 میلی‌گرم در لیتر کاهش می‌یابد و تغییرات قلبی در ماتورپسی و ماتورپسی در یک مدل می‌کند. نیترات در دوزهای بالاتر، تولید ارتروپورین کلی و افزایش می‌دهد. این نتیجه بافت به اکسبیوز پاسخ داده شد.11

در این مطالعه، تجویز نیترات اثری بر مقدار هموگلوبین در گروه‌های کنترل و دیابتی نداشت. شارام و همکاران پس از 120 روز تجویز نیترات سدیم به غلظت‌های 6000، 4000، 2000 و 1000 میلی‌گرم در لیتر از آپ آشامیدنی خرگوشی افزایش هموگلوبین در دوز 2000 میلی‌گرم در لیتر کاهش آن در دوزهای پایین را گزارش کردند. تاثیر نیترات بر هموگلوبین پیچیده است و به عوامل متعددی نسبت نیترات به هموگلوبین، وجود اسپرم‌های کاهش اکسبیوز از می‌نگی وارد 120 روز در مطالعه، همان‌گونه غلظت‌های 6000، 4000، 2000 و 1000 میلی‌گرم در لیتر تائع نیترات اثری در آپ آشامیدنی سفیدی از اکسبیوز موجب افزایش هموگلوبین و ماتورپسی شد.
سال است و این تجربه علت مهم آتروسکروز و تک‌مجاري عروق در افراد دیابتی است.

در بسیاری از مطالعات، اثرات نیترات بر سولفانیون خونی حیاتی سالم بررسی شده است. اما تاکنون مطالعات
در مورد اثر نیترات بر سولفانیون خونی حیاتی دیابتی
انجام نشده است که این موضوع می‌توانه قوت این
مطالعات باشد. از احتمال‌سازی این مطالعه می‌توان به زمان
کوتاه و هنگام عدم استفاده از دوکتسنری خونی مؤثر بر
کاهش می‌تواند باشد. این مطالعه می‌تواند به سبب افزایش
گزارش شده است که قد خون بالا می‌تواند سبب افزایش
کاذب همانتورتی‌کرات شود که ممکن است بر نتایج این مطالعه در
گروه‌های دیابتی تأثیر داشته باشد. اما این موضوع بیشتر
در مورد قد خون بالا 100 میلی‌گرم در دست نظر
است. در حالت که در این مطالعه قد خون موهای دیابتی
بين 160-163 میلی‌گرم در دست نظر بود و احتمالاً این
موضوع اثری بر نتایج داشته است.

از این‌ها است که نیترات نیتیکورین مرکزی می‌شود که تجویز
نیترات سدیم به دقت دومه سبب کاهش قد خون و وزن
بدن در موهای مبتلا به دیابت نوع 2 می‌شود. نیترات
مانگانس و نیترت‌های کاهش و تثبیت کل گلپلاژی
سفید و تعداد نخویل‌ها را افزایش داد. ولی اثر بر تعداد
گلپلاژی قرمز، مقدار هم‌گروه‌های تعداد پلاک نداشت. در
مجموع با توجه به این که تجویز نیترات به عنوان یک عامل
درمانی جدید در موهای دیابتی نوع 2 مطرح است، می‌توان
گفت این درمان اثر زیادی بر عضله شیری در موهای دیابتی
خونی ندارد و حتی با کاهش تعداد نخویل‌ها ممکن است
اثرات ضاره‌آمیز داشته باشد.

سیاست‌گذاری: نویستگان مقایسه مراقبت تشویقی و قدردانی خود را از
مساعدت و همکاری کروه فیزیولوژی عضو پزشکی است. علوم غذایی
دوروزنی و همکاری‌ها، با تشکیل یک گروه نخویل‌های
این پژوهش با تمرین ملی مراقبت نخویل‌های فیزیولوژی عضوی، در
شرایط 1941 انجام شد.

نویستگان گزارش که می‌تواند تک تغییرات فیزیولوژی غذایی، طرح
مراجعه‌ای است که جهت تغییرات ۲۳ میلی‌گرم در ویژه
حاصل وجود ندارد.

مجله علوم درونریز و متایولیسم ایران
دوره ششم، شماره ۳، آذر ۱۳۹۵
۴۲۵

های بالا (۴۰۰،۰۰۰ میلی‌گرم در لیتر) این عمل مهار می‌شود.

در این پژوهش، تجویز نیترات اثر بر تعداد پلاکت‌ها
موهای دیابتی و دیابتی نداشت. همچنین با یافته‌های
پژوهش، سرپرسری و همکاری در مطالعات
انجام این پژوهش اراز می‌دارند.

این پژوهش با تمرین ملی مراقبت نخویل‌ها فیزیولوژی عضوی، در
شرایط ۱۹۴۱ انجام شد.

نویستگان گزارش که می‌تواند تک تغییرات فیزیولوژی غذایی، طرح
مراجعه‌ای است که جهت تغییرات ۲۳ میلی‌گرم در ویژه
حاصل وجود ندارد.

i- Abuharfeil
ii- Gatseva
iii- Srehirban

Downloaded from ijem.sbmu.ac.ir at 4:28 +0430 on Friday August 2nd 2019
References

Effects of Oral Sodium Nitrate Administration on Cell Blood Count in Obese Type 2 Diabetic Male Rats

Khorasany V1, Yaghmeai P1, Tohidi M1, Gheibi S2, Varzandi T2, Ghasemi A2

1Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, I.R. Iran, 2Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran, 3Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran.

e-mail: ghasemi@endocrine.ac.ir

Received: 09/08/2017 Accepted: 12/09/2017

Abstract

Introduction: Type 2 diabetes is one of the most common metabolic diseases. Nitrate has been introduced as a new therapeutic agent for type 2 diabetes. Considering that both diabetes and nitrate have some effects on blood cell count and 30% of diabetic patients have anemia, the aim of this study was to determine the effect of sodium nitrate on blood cell count in obese type 2 diabetic rats.

Materials and Methods: Forty-eight male Wistar rats were divided into four groups: Control, Control + nitrate, Diabetes and Diabetes + nitrate. The groups that received nitrate (Control + nitrate, Diabetes + nitrate) again were divided into two subgroups, which received sodium nitrate (100 and 250 mg/L in drinking water) for two months: control+nitrate100 (CN100), control+nitrate250 (CN250), diabetes+nitrate100 (DN100), and diabetes+nitrate250 (DN250). Diabetes was induced using a high-fat diet for 14 days and injection of streptozotocin. Blood cell count was performed at the end of the study.

Results: In diabetic rats, nitrate administration reduced body weight, blood glucose, hematocrits, and neutrophils (all p<0.05) but increased total number of white blood cells and lymphocytes (p<0.05). Nitrate administration had no effect on the number of red blood cells, hemoglobin concentration, MCV, MCH, MCHC, or platelet numbers.

Conclusion: Administration of sodium nitrate, which is considered as a therapeutic agent in type 2 diabetes, decreased blood glucose in the type 2 diabetic rats but had no major harmful effects on blood parameters; in addition, it may also have anti-inflammatory effects by decreasing the number of neutrophils.

Keywords: Type 2 diabetes, Nitrate, Cell blood count, Male rat