سُرطان های گرده-

دانشگاه علوم پزشکی و خدمات بهداشتی- درمانی شهید بهشتی
دوری نوزدهم، شماره ۲، صفحه‌های ۱۴۳ - ۱۳۳ (مرداد - شهریور ۱۳۹۶)

مقدمه

سُرطان تیروئید، شایع‌ترین بدخیمی در منابع سرطان‌های غدد درون‌ریز، مواردی محسوب می‌شود. یک طور که یک درصد از سرطان‌های انسان را به خود اختصاص می‌دهد. ۱ طبق مطالعات ایتالیا بیش از ۲۰۰ مورد سرطان‌های تیروئید در سالهای اخیر افزایش چشته است و چنین افزایشی را به عوامل مختلف مانند قرارگیری در معرض پرتوهای کمپیوتر و التهابی در سیستم ایمنی می‌دهد. ۲ در سالهای اخیر، درک و میر ناشی از سرطان

i- Follicular thyroid cancer
ii- Papillary thyroid cancer
iii- Anaplastic thyroid cancer
iv- Medullary thyroid cancer
تیربوتید، نقش بسیار مهمی در ارزيابی پیش‌آگهی بیماری و انتخاب درمان دارد. ۱ رابرت پل رای را برای تشخیص و درمان آسیب‌های تیروبتید عبت در سوزرسکار، نمونه برداری عضفی سوزرسکاری (FNAB) تحت سوزرسکارگی و در نهایت تیپ‌سکپی از پای دفع جراحی بر اساس تابع سلول-بانیسیا، شناسایی یا پایش بیمار است. ۲ هر یک از این روش‌ها با محدودیت‌های همسان هستند و در برخی از موارد به دلیل عدم تشخیص دقیق، منجر به جراحی‌های غیر ضروری می‌شوند. با توجه به نظر مسی رهیک، در موارد مربوط به جراحی‌های بهتر، تشخیص مولکولار می‌کند. قبل از این که جراحی تشخیص، خواص کردن ملی‌پوشانی مولکولی و مربوطات متقابلی‌های متداول ملی‌پوشانی هستند که یکی از گروه‌های متداول ملی‌پوشانی می‌باشد. ۳ در نتیجه، می‌توان به نظر مسی رهیک (پن‌مرواری) پیشنهاد کرد.

iii-Nicotinamide adenine dinucleotide

vi- Pentose phosphate pathway

i- Fine needle aspiration biopsy
در این روش از میدان‌های مغناطیسی پری و امواج رادیویی
برای تهیه هسته‌های انواع اتمی استفاده می‌شود. جدی‌ترین
امواج رادیویی، امکان حرکت هسته‌ها از اسپین‌های با تراز
انرژی اولیه به اسپین‌های با تراز اولیه نیاز دارد. آن‌ها
آورده، سپس تابش پرتو فریان اسکرین آشفته‌تر، آشکارسازی
می‌شود. از میان روش‌هایی که امکان انجام این امکان را
پذیرفته‌اند NMR به دلیل سرعت بالا، کنترل محسوس به
بهینه شدن توجه بیشتری به ره بود روش به مقدار کمی از
نمونه نیاز دارد و نتایج قابل تکرار ارائه می‌شود. این
روش قبلی از انتقال از ماده‌ای به ماده دیگر است زیرا
هر ماده‌ای که در جنگلی تراز نخستین انتقال به سرتاسر
روش (HR-MAS) (4) یک ماده کتیزه بر است
برای نمونه کردن و بخشی به کار
می‌رود. انتقال چنین از این روش به دلیل مشکلات
دسترسی به دستگاه‌های محدود است.

- NMR
- GC
- FID
- GC-MS

یک روش جذاب‌تر از NMR
که به دستگاه‌های قطعی مطابقت دارد و با این حال
همه آن‌ها با استفاده از یک روش امکان‌پذیر نیست. عوامل
مختلف، مانند جنس سن، سیستم زندگی، استفاده دخانیات و
فعالیت‌های فیزیکی، جنگلی و تحمل متابولیکها را تحت
تأثیر قرار می‌دهد. ممکن است در مطالعات متابولیکی
افشای نمونه‌نگاری، اندازه‌گیری نمونه‌نگاری
مورد استفاده در این مطالعات مبتنی شود. این روش
پاسخی را به مقدار کم‌ترین آنتالی از در
برای اندازه‌گیری به‌صورت
ترکیب سطحی کم‌تر (GC-MS) نیز می‌تواند مورد
استفاده قرار گیرد و علاوه بر آشکارسازی آنتالیا به
یکی اطلاع رسانی دارد. در مورد آن راهکار که
بی‌پایان جسمانی و بی‌پایانی و
ستاندارد از GC-MS است.

i- Nuclear magnetic resonance
ii- High-resolution magic angel spinning
iii- Gas chromatography–mass spectrometry
iv- Flame ionization detection
5- چالش‌های موجود در تشخیص سطحان‌های تیریدید

در حال حاضر، استاندارد طالبی برای بررسی گره‌های تیریدید است و بسیاری از بیماران مبتلا به سطحان تیریدید در ابتدا بر اساس تابع حاصل از این روش تشخیص داده می‌شوند. علی‌رغم اینکه در ۲۰ تا ۴۰ درصد از موارد، بر تغییر ماهیت گره‌های تیریدیدی از مسئولیت درمان تیریدید، تا بین آن‌نویسی فولیکولار، سطحان فولیکولار و گونه‌های فولیکولار سطحان پایپلاری‌های است.

در برخی از موارد، زمانی که گره‌های فوتوسنسیی به‌نیتیب‌ها ماتریکس‌های لیبل‌دهنده‌شده شوند و به‌بازه FTc میکروسکوپی، آدنوماهای تیریدیدی ممکن است سطحان PTC را تقلیل کند.

نتیجه‌گیری‌های تشخیصی ممکن است به قرار گیرندهای به‌بازه PTC نتایج نشانگر باشد که بیشتر به‌بازه CT نتایج بیشتری ارائه دهند.

iii- Follicular variant of papillary carcinoma
iv- Hyalining trabecular adenoma
v- Computed tomography
vi- Standard magnetic resonance imaging
vii- Positron emission tomography

- طیف‌سنجی جرمی همراه با کروم‌توکوگرافی (LC-MS)

کروم‌توکوگرافی مکه که یک طیف‌سنجی جرمی (LC-MS) همراه است. از روش‌های بسیار مهم در مطالعه متابولیسم است. راهنماهای سنتون مورد استفاده در LC-MS معکوس است و منبع‌های برای آشکار سازی ترکیبات پویا و ماهیت پویا و ترکیبات اکتیو و کنترل پتیپ اپین از معایب آن حسب‌شده.

یکی از استفاده‌های LC-MS کنترل برای مطالعه در سال‌های LC-MS مونوامپتیک و MALDI-MS-MA-MS. استفاده شده در برای LC-MS-MS است. به دلیل وجود تحلیلگر معمولیان.

- MALDI-MS

این روش یک طیف‌سنجی جرمی میدئی بر پایت شناسی است که امکان داده‌ای و اندازه‌گیری سه بعدی ترکیبات را در چیپ‌ها ارائه می‌دهد. در روش MALDI-MS می‌شود. زمانی که بعد از اندازه‌گیری، ارژی‌های باقی‌مانده ضروری باشد، استفاده از هندسه‌های پویا به کار می‌رود.

قلم‌های تحقیقی خواهد بود. این سال‌هایی همان‌طور که قبل از میان این مادریک‌ها به یک مادریک سود می‌شود. نمونه‌هایی با یک مادریک به‌کار می‌رود. به نظر می‌رسد که پس از حامل قرار گیرندهای به‌بازه CT نتایج بیشتری ارائه می‌دهند.

iii- MALDI-MSi
iv- MALDI-MSii
v- MALDI-MS
vi- MALDI-MS

- طیف‌سنجی جرمی فیزیکی (MS-MS)

یکی از استاندارد‌های مورد استفاده در MS-MS می‌شود. بسته به نوع مادریک مورد استفاده، طیف‌سنجی از گونه‌های مولکولی مانند پروتئین‌ها، پپتیدها، گلیکان‌ها، بلوپلاسمیک و مولکول‌های پرویزیون (آتروژن) می‌شود.

- طیف‌سنجی جرمی مولکولی به‌شناخت شرایط مختلف

مورد استفاده قرار گرفته‌اند.

۱۰۹۹-۱۳۹۷

i- Liquid chromatography–mass spectrometry
ii- Matrix-assisted laser ionisation mass spectrometry imaging
پیش‌فرض‌های حاصل در یزیش‌شناسی مولکولی و استفاده آن در پژوهش‌های مبنای مطالعات در زمینه زیست‌سزاران ها و سازگاری سزاران بررسی شده است. مهم‌ترین تغییرات پیش‌فرضی کشف شده عبارتند از: جهش‌های زن در RAS، جهش‌های ZN 1, BRAF 1, RET/PTC و جا به جای پروتوکالرون PAX8/PPARγ در سزاران پایداری تیروئید 1 و جهش‌های ZN 3 و RET 3 در سزاران متلای سزاران. 2 Overflow بر این، در مطالعات مختلف از پروتوکالرون RNA کمک (miRNA) و FTC و پروتوکالرین و نیز میان آدنوم‌های فولیکولا استفاده شده است. 3, 4 علی رغم همبستگی پروتوکالرون استفاده در بررسی سزاران تیروئید، نتایج در مقایسه با مقایسه نوع مولکولار غیر مناسبی بین سزاران سرطانی و سالم ثابت شده است. مطالعات دیگری نیز در ارتباط با تکنیک‌های روندی شده توسط میان از نرخ های ریسک که در سزاران تیروئید افراز بیان نشان می‌دهند، انجام گرفت. در این مطالعات نیز تعدادی از عوامل روشنی به عنوان حساس‌انگی معرفی شده. اما معاینه این مطالعات بررسی توده دیگر و جدید تا علت مورد نظر. در این مقاله آزمون‌های مولکولی مختلف در یک کاربرد بالینی مورد تایید قرار گرفته‌اند. 4, 5, 6 با توجه به اینکه البته با افزایش تعداد افراد شناسایی که از این روش استفاده شده است. مطالعات مختلف حاصل از توانایی آن روش در افزایش سرطان‌های تیروئیدی و تیروئیدی نیز به شاخص برای روند به نشان‌گرها بالغ‌های یکی می‌باشد. جهت تعیین دستورالعمل‌های مقرن بر صورت، ضروری است.

6- متابولومیک در مطالعات سرطان‌های تیروئید

تعیین سیان اسپی‌سی مولکولی مختلف از تیروئید، این سیال

ناهی سرطانی، آدنوم‌های و تومورهای دیگر به لحاظ بالینی از اهمیت بیماری برمی‌دارند است. مطالعات مختلف حاصل از توانایی آن روش در تعیین میان متابولیک‌های تیروئیدی و تیروئیدی و نیز متبنا در HR MRS میکولی و همکارانش. در مطالعات روش HR MRS

i- B-Rapidly accelerated fibrosarcoma
ii- Rat sarcoma
iii- Rearranged during transfection
iv-Miccoli

v- Deja
vi- Jordan
یتیمی و پرونده‌های متابولیکی استفاده کردن. مقایسه‌ی پرونده‌های متابولیکی حاصل از سه وضعیت آسیب شناسی، تقابل‌های معنی‌داری میان PTC و تومورهای خوش خیم تیروئید را نشان دادند. یافته‌های حاصل از این مطالعه حاکی اکثریت بالقوه یک روش کمکی در تشخیص و افتراق سرطان‌های تیروئید در کنار روش‌های تشخیصی مرسوم است. از طریق مطالعه‌ی آینده‌گانگ، دو گروه شایل ۸ ماهی H NMR مشترک به همیشه یکی گزارش تحقیقات مبتنی بر این مطالعه، همگونی قابل توجهی می‌شود.

نتایج نشان دادند که مقاله‌های خوش خیم از نمونه‌های کروی، اثر آن در مطالعه‌ی H NMR مربوط به اندازه‌گیری NMR

فناکاران مواد متابولیک تعیین‌کننده از کریون،

فناکاران مواد متابولیک به اندازه‌گیری H NMR و تکیه‌گاه از تیروئید موجود به این گونه تأثیر می‌گذارند که در این مقاله، در نتایج، گزارش گردید.

فناکاران مواد متابولیک به اندازه‌گیری H NMR مشترک به همیشه یکی گزارش تحقیقات مبتنی بر این مطالعه، همگونی قابل توجهی می‌شود.

نتایج نشان دادند که مقاله‌های خوش خیم از نمونه‌های کروی، اثر آن در مطالعه‌ی H NMR مربوط به اندازه‌گیری NMR

فناکاران مواد متابولیک تعیین‌کننده از کریون،

فناکاران مواد متابولیک به اندازه‌گیری H NMR و تکیه‌گاه از تیروئید موجود به این گونه تأثیر می‌گذارند که در این مقاله، در نتایج، گزارش گردید.

نتایج نشان دادند که مقاله‌های خوش خیم از نمونه‌های کروی، اثر آن در مطالعه‌ی H NMR مربوط به اندازه‌گیری NMR

فناکاران مواد متابولیک تعیین‌کننده از کریون،

فناکاران مواد متابولیک به اندازه‌گیری H NMR و تکیه‌گاه از تیروئید موجود به این گونه تأثیر می‌گذارند که در این مقاله، در نتایج، گزارش گردید.

نتایج نشان دادند که مقاله‌های خوش خیم از نمونه‌های کروی، اثر آن در مطالعه‌ی H NMR مربوط به اندازه‌گیری NMR

فناکاران مواد متابولیک تعیین‌کننده از کریون،

فناکاران مواد متابولیک به اندازه‌گیری H NMR و تکیه‌گاه از تیروئید موجود به این گونه تأثیر می‌گذارند که در این مقاله، در نتایج، گزارش گردید.

نتایج نشان دادند که مقاله‌های خوش خیم از نمونه‌های کروی، اثر آن در مطالعه‌ی H NMR مربوط به اندازه‌گیری NMR

فناکاران مواد متابولیک تعیین‌کننده از کریون،

فناکاران مواد متابولیک به اندازه‌گیری H NMR و تکیه‌گاه از تیروئید موجود به این گونه تأثیر می‌گذارند که در این مقاله، در نتایج، گزارش گردید.

یتیمی و پرونده‌های متابولیکی استفاده کردن. مقایسه‌ی پرونده‌های متابولیکی حاصل از سه وضعیت آسیب شناسی، تقابل‌های معنی‌داری میان PTC و تومورهای خوش خیم تیروئید را نشان دادند. یافته‌های حاصل از این مطالعه حاکی اکثریت بالقوه یک روش کمکی در تشخیص و افتراق سرطان‌های تیروئید در کنار روش‌های تشخیصی مرسوم است. از طریق مطالعه‌ی آینده‌گانگ، دو گروه شایل ۸ ماهی H NMR مشترک به همیشه یکی گزارش تحقیقات مبتنی بر این مطالعه، همگونی قابل توجهی می‌شود.
کوره و همکارانش از روش MALDI MS بارای ارزیابی پروفایل‌های لیدی Bond به تمایل‌های سرمی و بیانی به دست آمده از بیماران مبتلا به دوران دیجین و خوشیم تیروئید استفاده کردند. این بررسی شامل سرو، سرما، تیروئید، و خورشید و تیروئید مختلف از این مطالعه تمایل گروه سالم از گروه بدخم، گروه سالم از گروه خوشیم و گروه بدخم از گروه بدخم بود. نتایج به دست آمده از این بررسی نشان داد که مقری ۱۰ نوع چربی (۲ نوع فسفاتید کولین، ۶ نوع فسفاتید اسید و ۱ نوع استوکسیل) تفاوت معنی‌داری را در این سه گروه (در هر دو نمونه سرمی و باتی فنی) رد کردند. از سوی دیگر، بیان بیش از حد به آن‌ها (SCDI و FNAS) در نمونه‌های سرمی و سرما گروه تیروئید بدخم مشاهده شد. این آزمایش از طریق انتشار از افتخال دوره توموری به دو خون نمونه می‌کند و مقارنی می‌کند. جزئی‌تری از تفاوت نمونه‌های سرمی به سرمی بیماران مبتلا به بیماران PTC‌ها افزایش می‌یابد. نتایج حاصل از این مطالعه بستگی و PTC را در نمونه‌های بالین سرامیک و PTC آزمایش نشان می‌دهد. در مطالعات دیگر، برای تهیه PTC نمونه‌های از تیروئید از روی‌های مربوط به گروه‌ها و نمونه‌های سالم و مقایسه آنها با کیفیت و همکارانش از روش کرومانتوگرافی مایع-طیف سننی (LC-MS) استفاده کردند. تحلیل آماری مناسب، تغییرات معنی‌داری را در مقدار متا-پتالاتیپاتی مختلف میان این سه گروه نشان داد. نتایج طبیعی که از قبیل قبیل بیماران مبتلا به سرما و کوره بود تفاوت معنی‌داری مشاهده می‌کردند. مقدار اسید هیدروکسی پتاتین در PTC نسبت به دو گروه دیگر می‌شود. با توجه به نتایج به دست آمده محققین مشخصه اسید هیدروکسی پتاتین (محصول واسطه در تیروئید اسید‌های C) با عناوین یک نشانگر بالقوه در تماشای از گروه‌های معرفی کردن. ۳۹ در مطالعات متفاوت، ۳۸ در همکارانش از نمونه‌های بادام پری بررسی متابولوم آسیب‌های مختلف تیروئید

iv- Yao
v-Wojakowska

i-Guo
ii- Fatty acid synthase
iii- Yao
استفاده شد. در نهایت، اسید اوکتیک، استیل گرانیک،
گالکتنول، سوربیول، اسید ایوریزیک، اسید گلوکاریک،
میلیزیون، گلوکر، و مالتوئید به عنوان متابولیسم
تغییر یافته در نمونه‌های سرطانی معرفی شدند که از
میان آنها سربیول، گالکتنول، میلیزیون و مالتوئید
به‌طور چشمگیر تعیین را نشان دادند. با توجه به این
یافته، محققین
نتیجه‌گیری کردند که مسیر متابولیسم
گالکتنول در سطح 1 در مانور توجه قرار گیرد. در
استفاده از TMT سرطان شناسی مغز را به مقایسه
تغییرات نانومیک تیروئید، این تغییرات مختلف
نتایج متقابل را ارائه کردند. در مطالعات انجام
گرفته توسط
میکروبی 0 و دیگران که در روش‌های میکرو‌بیوتیک
کردند، کاهش مقداری چربی در بسته‌های توموری
گزارش شد. در حالی که در دو مطالعه میکرو‌بیوتیک
بر روی TPC و نانومیک است. تغییرات
متبولیکی عمدب در تابلوهای قدیمی (کاهش گلکوز، فروکونیز،
گالکتنول، مانوز، رامنوز، و گلوکونیک اسید)،
متابولیسم گلوکونیک اسید و افزایش
اینتریزیک سایر و پریدهایی یک مدل به قرار گرفت.
در مقاله، اسید چرب و اسید صفرات از در خور گرفته
در نمونه‌های توموری خوشه‌افزایی داشت. پروپانولیزی
مربط به متابولیسم در نمونه‌های توموری خوشه‌افزایی داشت. در
برخی از متابولیسم‌ها مانند در برخی دیگر به طور
تغییری بی‌چیدگی متفاوت بودند. این امر می‌تواند از
ویژگی‌های متابولیکی مشترک و محسوس بین جدید
در مطالعه دیگری گروه 6 مادران و زنان
اسیدهای آمینه‌ای آزاد بر روی نمونه‌های پلاسمای
میلیتن سرطان تیروئید را با استفاده از تحلیل‌کار
و احتمالاً این تغییرات از جمله سرطان
تنگیک 12 است. علاوه بر این، تغییرات
فونریک مربوط
mRNA RT-qPCR استفاده شد. مقایسه
فوتا استفاده M 25 در ترقیه‌کار
زمان پایین است. در (GC-TOF-MS)
بررسی نشان‌های بالقوه در تشخیص سرطان
تیروئید استفاده کردند. نمونه‌های کاهش در این
مطالعه، نمونه
های بافتی بود و برای تایید نتایج به دست آمده از
PCT و PCT-MS از میکرو‌بیوتیک به

v-Xu
vi-Gu

1- Chen
2- Real time quantitative polymerase chain reaction
3- Shang
4- Gas chromatography-time of flight mass spectrometry
هستند. استفاده متابولومیک روی گلیکوزیکی برای درک فنوتیپی بک اورگانیسم فراهم می‌کند و نقش اساسی در زیست‌شناسی نظام‌های دارد. در سال‌های اخیر، مطالعات متابولومیک در ژنتیکی و آریس‌های پژوهشی به سرعت به سطح تحقیقات اقتصادی و که از آن‌ها کاربردی برای تشخیص بالینی ناشدنی است. هدف اصلی متابولومیک، تعیین مقدار متابولیسم موجود در نمونه‌های زیستی و ارتباط افزایش و کاهش مقدار آنها با علائم بالینی است. از میزانی این مطالعات استفاده از نمونه‌های جِم‌اوُری شده به روش‌های متفاوت و یافتن یک نشانگر یا تعیین پروتئین متابولیسم می‌باشد. به طور کلی روشهای عملی که در مطالعات متابولوم سرطان‌های تیرورتی مورد استفاده قرار گرفته است، عبارتند از: هنتری‌هم (H NMR) و طیف سنجی جرمی (MS). به‌طور مطالعات انجام گرفته، بر روی نمونه‌های آنتی‌سرول پایپلاین تیرورتی و عددهای اندیکی از بررسی‌ها تاکید می‌کنند که متابولومیک نمونه‌های توموری خوش‌خیم، بدیخ و نمونه‌های سالم کشف شد و متابولیسمی غیر از آن می‌باشد. در مشکل بودن، یک توجه به نتایج حاصل از این مطالعات، از تغییر در مسیرهای متابولیکی دست به چرخه‌ها و نکوتونی‌ها و در نتیجه تغییر در مقادیر متابولیسم مربوط به این مسیرها در نمونه‌های توموری تیرورتی نسبت به اوفرتی طبیعی مشاهده شد (جدول 1).

جدول 1- خلاصه‌ای از مطالعات انجام شده بر روی متابولوم سرطان‌های تیرورتی

<table>
<thead>
<tr>
<th>نمونه مورد استفاده</th>
<th>متابولیسم غیر</th>
<th>روش مورد استفاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAB</td>
<td>MRS</td>
<td>کابین</td>
</tr>
<tr>
<td>21 متابولیسم غیر</td>
<td>HMRSM</td>
<td>فیبرهای و نشانه‌های آتیتوسی</td>
</tr>
</tbody>
</table>
تشخیص بالینی آسیب‌های توده‌ای: متافوکاسیون راه حلی است که به این حال، ابزاری که در پیش آمریکایی‌ها، با هدف قرار دادن آزمایش‌های مختلف مداخل در آن آسیب‌ها، اهداف درمانی جدیدی پیش روی محققین قرار خواهد گرفت.

References

43. Harris E. Biochemical Facts Behind The Definition And Properties Of METABOLITES. 2014.

Metabolomics and Thyroid Cancers: New Approaches for Biomarkers Discovery

Nozhat Z1, Hedayati M1, Azizi F2

1Cellular and Molecular Endocrine Research Center, & 2Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
e-mail: Hedayati@endocrine.ac.ir

Received: 06/05/2017 Accepted: 18/07/2017

Abstract

Introduction: Thyroid cancer is the most common malignancy of endocrine systems. Nowadays, Fine Needle Aspiration Biopsy (FNAB) is the gold standard in the diagnosis of thyroid cancers. Despite the high accuracy of this method, roughly 20-30 % of patients have indeterminate cytological results and surgery (histo pathological examination) is required for final confirmation of malignancy, a limitation, for which the need to provide a non-invasive approach seems necessary. Metabolomics is the study of a complete set of metabolites in biologic samples and compared to normal cells, metabolites in cancer cells show alterations. This article reviews the role of metabolomics i.e studies in the discrimination and diagnosis of thyroid cancers.

Materials and Methods: A literature search was performed in main databases including PubMed, Web of Science, Google Scholar, Scopus and Sciencedirect in a 7-year time frame from 2010 to 2017. All the articles obtained were in English.

Results: Nuclear magnetic resonance (NMR) - and mass spectrometry (MS) - based techniques are the main methods in metabolomic studies, and based on the results of these studies, changes in carbohydrates, lipids and nucleotides’ metabolic pathways and the resulting metabolite alterations observed in thyroid tumors were compared with normal tissues.

Conclusion: It seems that in the near future, metabolomic studies, besides conventional methods will be used for diagnosis and differentiation of different types of thyroid cancers and will most likely introduce altered metabolic pathways as therapeutic targets.

Keywords: Thyroid cancer, Biomarker, Metabolomic, Metabolomic Profile, Diagnosis, Metabolome