بررسی تأثیر تمرینات ورش هوازی بر افراد دارای اضطراب وزن نوجوان با مطالعه شبکه‌ی به هم کنش پروتئین-پروتئین

پوران مرغی‌نی، لیلا نصیری‌نی‌یزدانی، دکتر حسنی رضایی طارمی‌نی‌یزدانی، اکرم صفایی‌نی‌یزدانی
سعود حسینی نکلو، مونا زمانی‌نی‌یزدانی

1) کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی آزادان، ابادان، ایران. 2) مرکز تحقیقات فیزیوتراپی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران. 3) دانشکده علوم پزشکی آزادان، ابادان، ایران. 4) مرکز تحقیقات پروتئومیک، دانشکده علوم پزشکی شهید بهشتی، تهران، ایران. 5) دانشگاه آزاد اسلامی، واحد تهران مرکزی، تهران، ایران.
نامه‌نویسی محتوای نویسندگان مسئول: تهران، خیامی زبانی

e-mail: tavirany@yahoo.com

چکیده
مدیر: با افزایش وزن احتمال ابتلا به بیماری‌های قلبی مختلف افزایش می‌یابد. وزش در مهار چالشی موتر است، اما مکانیسم مولکولی آن اثر به چگونی شناخته شده است. در این مطالعه، تغییر پروتئین‌های کلیه در افراد دارای اضطراب وزن بعد از انجام تمرینات ورشی هوازی و تن قلبی با تحلیل انجام شد. نتایج نشان می‌دهد کلیه پروتئین‌های تغییر یافته در مطالعه Cytoscape نوین‌زده شده‌اند و بعضی از آنها به افراد دارای اضطراب وزن (تراکم زیستی) مربوط است.

دریافت نویسنده: واژگان کلیدی: اضطراب وزن، فعالیت‌های ورزشی، شبکه چاله‌ای

مقدمه
شرکت‌های کمک‌نیاز و کاهش فعالیت‌های بدنی منجر به افزایش وزن می‌شود. ماهیت‌های اسکلتی افراد چاق انعطاف‌پذیری کمی دارند و با افزایش توده‌ای قلبی در بدن، احتمال مقاومت به انسولین بالا می‌رود. گفت کردن ماور غذایی با عوامل چاهان کننده از عوامل اصلی شیوع بالایی چاقی است. این احتلال تحذیر‌های زیست‌محیطی چاله‌ای قلبی و غذایی1 است. دیابت نوع دوم1 و ناشنوایی مبتلایان مردمی از عواملی است که می‌تواند سبب پیروی از عادات غذایی و سیگار‌سوزی بود.

پژوهش‌های تکیه‌گاهی از طریق شناخت مسیرهای زیستی و متابولیک در پروتئین‌های کلیه دارای این اضطراب وزن، خاصاً در زنان، نشان‌دهنده کاهش می‌باشد که تغییرات بیوپوشینی در این دسته از افراد اتفاق می‌افتد. انجام پروتئین‌های تگین‌دهنده از طریق شناسایی مسیرهای زیستی و
پوریا مروتی و همکاران

بررسی تاثیر ترمیم‌های ورزشی هوازی بر افزایش اضطراب و روابط شیکاپ جهت کشید پروتئین-پروتئین

٧٦١

یکی از مطالعاتی که برای بررسی میزان بهتر کننده مکانیسم تغییرات

سیستماتیک بیماری ضروری است. این مطالعات

زدن‌دهی به شناخت‌هایی از رفتار و تعامل مولکول‌های

درک‌گیر در فیزیولوژی مختلف و سلسله مرحلات تاثیرگذاری

ژن‌ها و متغیرهای مختلف. این مقاله ساختار یک شبکه

سازمان‌دهی و بررسی اهمیت هرکدام از ژن‌ها در تحلیل

و فهم شبکه، ژن‌های ژنتیکی می‌شوند. شاخ‌های تغییرات

میان برای این رتبیدی می‌تواند شاخ‌های مکانیسم شبکه

باشد. این‌ها از بررسی شبکه مکانیسم شکافته، دیکتاژیک

بی‌الغایی روش‌های مختلف، توجه به اینکه را به جوهر قدرت است. این

مولکول‌های که از نظر خصوصیات مکانیسم شبکه، برای

بایستی نسبت به سایر مولکول‌ها دارا است. در این مطالعه

ال‌بی‌ام‌آژی در تغییر فنوتیپ انواع شیار می‌باشد و انواع

بیماری از دیدگاه باشند. مانند بیماری‌ها اسپاین، مات دیابت، بیماری‌های قلب و عروقی

و سرطان شناخته‌شده است و ورزش در این مقاله

می‌تواند موثر باشد: به‌طور حال حاضر مطالعات کستره

جدول ١. بررسی‌های تغییریانی‌که در فیزیولوژی‌ای افزایش اضطراب و روابط شیکاپ براساس

مطالعات مفهومی سروانی

<table>
<thead>
<tr>
<th>نام پروتئین</th>
<th>ریف</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenylate kinase isoenzyme 1</td>
<td>١</td>
</tr>
<tr>
<td>Triosephosphate isomerase 1</td>
<td>٢</td>
</tr>
<tr>
<td>Carbolic anhydrase 3</td>
<td>٣</td>
</tr>
<tr>
<td>L-lactate dehydrogenase A chain</td>
<td>٤</td>
</tr>
<tr>
<td>Glyceroldehydes-3-phosphate dehydrogenase</td>
<td>٥</td>
</tr>
<tr>
<td>Fructose-bisphosphate aldolase A</td>
<td>٦</td>
</tr>
<tr>
<td>Creatine kinase M-type</td>
<td>٧</td>
</tr>
<tr>
<td>Beta-enoicase</td>
<td>٨</td>
</tr>
<tr>
<td>Pyruvate kinase muscle isozyme</td>
<td>٩</td>
</tr>
<tr>
<td>ATP synthase subunit beta, mitochondrial</td>
<td>١٠</td>
</tr>
</tbody>
</table>

بررسی قرار گرفتن دو شاخ‌ساز مکانیسم مکه که در این مطالعه برای شاخ‌سازی انسان گلیکی شیکاپ مورد استفاده

قرار گرفتن، درجه و پیروپینی درجه و پرکننده، متفاوت شبکه، امکان تشخیص

عنصر گلیکی شیکاپ را فراهم کرد. ٧٧ مطالعه کرده، در مورد

پژوهش را استخراج می‌کند و در قالب یک شبکه به‌معنای

پروتئینی مفهوم‌پذیر می‌کند. توسط نتورک‌ها آنالیز که یکی از زیر

مجمع‌های انرژی سیستماتیک است تبدیل شده در گره‌های براساس شاخ‌ساز مکانیسم مورد

بررسی قرار گرفتن دو شاخ‌ساز مکانیسم مکه که در این

مطالعه برای شاخ‌سازی انسان گلیکی شیکاپ مورد استفاده

قرار گرفتن، درجه و پیروپینی درجه و پرکننده، متفاوت شبکه، امکان تشخیص

عنصر گلیکی شیکاپ را فراهم کرد. ٧٧ مطالعه کرده، در مورد

پژوهش را استخراج می‌کند و در قالب یک شبکه به‌معنای

پروتئینی مفهوم‌پذیر می‌کند. توسط نتورک‌ها آنالیز که یکی از زیر

مجمع‌های انرژی سیستماتیک است تبدیل شده در گره‌های براساس شاخ‌ساز مکانیسم مورد

بررسی قرار گرفتن دو شاخ‌ساز مکانیسم مکه که در این

مطالعه برای شاخ‌سازی انسان گلیکی شیکاپ مورد استفاده

قرار گرفتن، درجه و پیروپینی درجه و پرکننده، متفاوت شبکه، امکان تشخیص

عنصر گلیکی شیکاپ را فراهم کرد. ٧٧ مطالعه کرده، در مورد

پژوهش را استخراج می‌کند و در قالب یک شبکه به‌معنای

پروتئینی مفهوم‌پذیر می‌کند. توسط نتورک‌ها آنالیز که یکی از زیر

مجمع‌های انرژی سیستماتیک است تبدیل شده در گره‌های براساس شاخ‌ساز مکانیسم مورد

br

i- Macías Cervante
ii- Cytoscape (http://cytoscape.org)
iii- Reactome
iv- MINT
v. Network Analyzer

Downloaded from ijm.sbmnu.ac.ir at 17:54 +0330 on Tuesday December 11th 2018
شناسایی شدند. پارامترهای در نظر گرفته برای Degree Cutoff: 2، Node Score Cutoff: 0.2

شامل 0.2

مربوط به پروتئین‌های مورد نظر (هستوسنسی زنی) از استفاده شد. CLUGO

الگوریتم

حمض حاداقل مشابه ژن در فراورده مورد نظر و نیز حداکثر درصد مشابه ژن دارند. این محدودیت اتفاق یافته در حضور حاداقل سه ژن در یک فراورده

P-value

استفاده شد.

یافته‌ها

شکل 1- شبکه برمکش پروتئین پروتئین برای پروتئین‌های تغییر بیان در بیان ماده جنبه‌های نووجوانان دارای اضافه وزن بعد از انجام تمرین و روزگاری در شکل 1 نشان داده شده است. این شبکه شامل 969 گره و 1936 یال است که توسط نرم‌افزار سیتواسکیپ برای تجسم شبکه‌های تعامل مولکولی

رضم شد. این تجزیه در ارتباط با پایگاه‌های داده برگ یادهای نظاره نزدیک و تعاملات پروتئین-پروتئین، DNA و تعداد زیادی که به شکل فازی‌های برای اندازه‌گیری ارگانیسم‌های مدل در سنتر سه‌مرده بیشترین کاربرد را دارد. سیتواسکیپ از پنتیدن‌های کردن پلاگین (plug-in) پشتیبانی می‌کند. پنتیدن‌های پلاگین

پروتئین‌های کردن. بدین ترتیب، آن پلاگین‌های آنالیز است که از آن می‌توان برای محاسبه پارامترهای مختلف شبکه استفاده کرد. توزیع درجه و بینایی پارامترهای مهمی است که توسط توزیع آنالیز برای هر پروتئین در این مطالعه محاسبه شدند. توزیع درجه و بینایی برای چهار مدل جمع‌آوری شده است. جدول 2 و 3 ارزش‌های شده است. با توجه به خطوط ترسیم

شده در این شکل‌ها گره دارای بیشترین مقدار درجه و بینایی، به عنوان عنصر کلیدی شبکه معرفی شده (جدول

\[C_B(v) = \sum_{s=1}^{s_1} \frac{G(V, E)}{\sigma_s(v)} \]

\[\text{در یک نمودار} \text{ با} n \text{ رأس، بینایی} (v) \text{ راس} v \text{ به وسیله زیر تعیین می‌شود:} \]

\[\text{که تعداد کوتاه‌ترین مسیرها از} s \text{ تا} s_1 \text{ است و} \]

\[\text{که تعداد کوتاه‌ترین مسیرها از} s \text{ تا} s_1 \text{ است که از رأس} \]

\[\text{سمیره‌های داخل شبکه قرار می‌گیرند. در شکل} \text{ 2 توزیع بینایی برای گره‌های شبکه برمکش پروتئین-پروتئین در} \]

\[\text{شکل} 1 \text{ نمایش داده شده است.} \]

شکل 2- توزیع درجه برای گره‌های شبکه برمکش پروتئین-پروتئین نمایش داده شده در شکل 1.
برای شناسایی مناطق پرترکم شیکه (موموس به خوشه) از استفاده شد. در خوشه MCODE (module 2 و module 1) برای شیکه برهمکنش پروتئین- پروتئین شناسایی شدند (شکل‌های ۴ و ۵). پروتئین است که مشترک امتیاز تعاملی را در هر خوشه دارد که با مدل سیز رنگ نشان داده شده است. پروتئین‌های نسل‌فرمول کیت‌زای ۱۰ در خوشه‌های ۱ به عنوان seed معرفی شده است. خوشه‌های قابل است. فرآیندی که مشترک برای خوشه‌های ۱ و ۲ به ترتیب در شکل‌های ۶ تا ۷ نشان داده شده است.

جدول ۲- پروتئین‌های کلیدی برای شبکه برهمکنش

<table>
<thead>
<tr>
<th>پروتئین</th>
<th>نام زن</th>
<th>دویج</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKM</td>
<td>۱۲۳</td>
<td>۴۵۶</td>
</tr>
<tr>
<td>GAPDH</td>
<td>۷۸۹</td>
<td>۱۰۱</td>
</tr>
<tr>
<td>ATP5B</td>
<td>۱۱۲</td>
<td>۱۳۴</td>
</tr>
<tr>
<td>LDHA</td>
<td>۱۵۶</td>
<td>۱۷۸</td>
</tr>
<tr>
<td>ALDOA</td>
<td>۱۹۰</td>
<td>۲۱۲</td>
</tr>
<tr>
<td>TPI1</td>
<td>۲۳۴</td>
<td>۲۵۶</td>
</tr>
</tbody>
</table>

برای توزیع بینانی برای گروه‌های شبکه برهمکنش پروتئین- پروتئین نمایش داده شده در شکل ۱.

PKM, GAPDH, ATP5B, LDHA, ALDOA

به عنوان پروتئین‌های کلیدی در شبکه پروتئین‌های TPI1 تغییر بیان یافته در میان ماهیچه نجویان دارای اضافه وزن بعد از اندازه‌گیری و روزشی، معرفی شده (جدول ۲).

شکل ۳- توزیع بینانی برای گروه‌های شبکه برهمکنش پروتئین- پروتئین

برای تحلیل هسته‌شناسی (GO) برای ذهن مناسب، بیماری و نشان‌های تبدیل حیاتی، پروتئین تغییرات مربوط، فاکتورهای زیستی انتخاب شدند. از آن‌ها برای تصمیم‌گیری استفاده شد.

شکل ۲- خوشه ۱ پروتئین‌های کلیدی در این خوشه با مریخ گنگ نشان داده شدند. پروتئین‌های سلفولک پراکسات seed کیت‌زای ۱ که شیکه توسط PGK1 که در خوشه ۱ است. با رنگ سبز نمایش داده شده است.

بحث
چاقی به عنوان یکی از اختلالات شایع در دنیا در قرن 21 مطرح شده است و در حال حاضر روند رشد آن به پیشرفت آن و در شرایط هشدار قرار دارد. چاقی احتمال ایجاد در بیماری‌های قلبی، دیابت نوع دوم و انواع مشخصی از سرطان‌ها را افزایش می‌دهد. در نتیجه، یافته‌های اخیر در جهت مهار و درمان این سندرم می‌تواند در این زمینه اهمیت داشته باشد. چاقی در بیماری هپاتیت‌های است که با افزایش پیوست که چنین می‌تواند در اثر این زمینه اهمیت داشته باشد.
ورزشی آنفایت بافت است.

تغییر بیان این دو نیمه دیگر دخیل در گلیکوزئیون نشان دهنده مصرف بالای کربوهیدرات‌های تری ساختارهای گلیکوز. در این پژوهش، تغییر بیان و نشان دهنده در جمعیت گلیکوز در هم است. ATPS8B1 (خاطر ریزه سوم در جدول (3) که زیر واحد برای ATP استیلات را کم می‌کند. این آنزیم در واقع یک آنزیم مایکروبیون است و در ساخت و ATP و تأمین انرژی سلول در حضور یک شیب گلیکوز در سراسر عضلانه استفاده از انرژی الکترون از زنجیره یکنفری نشان داده شده است. در این تعاملات شبه، برای بررسی تغییر بیان زمین در سطوح دیگر ساختارهای سلول‌های دستگاه‌کورش و بیماری‌های دهان و ندارند تا تحلیل شیب گلیکوز در انعطاف پذیری بیماری‌ها بین مصرفی. شیب تغییر بیان ایجاد می‌شود. است. در این مطالعات، شیب تعادل بیماری‌های غلیظ می‌شود. در این مطالعات، شیب تعادل بیماری‌های غلیظ می‌شود.
ارتباط هستدین، زیرا هر کدام از این فرآیندها خود به نحوی تعداد بیشتری آنزیم و مسیر نیکوتینیمیدی درک می‌شود. مسیر نیکوتینیمیدی خاص، اطلاعات ارزشمندی در رابطه با عملکرد مسیرهای متابولیک فراهم می‌کند. به علت ماهال انگیزش در ترکیب هاپتیپ ویهفیت، پس از صرف غذا، عامل خطر باری بیماری‌های قلبی عروقی در نوع است. مسیر نیکوتینیمیدی در حالیکه سطح بالایی غیرمغز در گلوکوز و انژولین بوده و جریان ابتلا به بیمارها ۲ را نشان می‌دهد. ارژی، پاسخ‌های متابولیک پس از ورود نیکوتینیمید به کاهش عوامل، نقش و اثر ساز و سبز بدن فراهم است. این مطالعه نشان می‌دهد که انجام تمرینات ورژنیک در افراد با اضافه ورژن می‌تواند موجب تنظیم مجموعه‌ای از مسیرهای زیستی مرتبط با چالش بود. این تحقیق نشان می‌دهد که این مطالعه، عنوان کلیدی کنترل کننده تغییرات ارتباطات پروتئینی بعد از ورود در توجهات چاق رتبه‌بندی شده. در این تحقیق، وکی‌مرد زن جدید و مؤثر زنی شناسایی و ارائه شد. طلب‌سردی از مسیرهای زیستی مرتبط شناسایی و شناسایی می‌شود. از نظر قوت این مطالعه عکس‌برداری از یک ادغام جمله‌گذاری از جمله گلیکولیزیز. به‌طور آزمایش و گزارش‌های فیزیولوژیکی مورد نگاه ای در دسته‌ای ۱۴، توجه به زیستی مبادله شده است. با توجه به حضور شن، در هر فرایند، ۲۰ درصد از انصراف این خوشه در فرایند زیستی مرتبط خوشه در هر فرایند، ۲۰ درصد از انصراف این خوشه در هر فرایند مرتبط خوشه در هر فرایند، ۲۰ درصد از انصراف این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند، ۲۰ درصد از انصراف این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر فرایند مرتبط خوشه در هر فرایند. این خوشه در هر 1) متابولیک

References

8. Lee JS. The effects of gender, obesity rate, nutrition knowledge and dietary attitude on the dietary self-efficacy.

1- Metabolic process

Investigation of Effect of Exercises on Overweight Adolescents via Protein-protein Interaction Network Study

Morovati P1, Mansouri V2, Mohammadi A3, Rezaei Tavirani M4, Safaei A4, Hesami Takalou S5, Zamanian Azodi M4

1Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran, 2Physiotherapy Research Center, Department of Anatomy and Cell Biology, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 3Abadan University of Medical Sciences, Abadan, Iran, 4Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 5Islamic Azad University, Central Tehran Branch, Tehran, I.R. Iran

e-mail: tavirany@yahoo.com

Received: 23/04/2017 Accepted: 28/08/2017

Abstract

Introduction: With increasing weight, the risk of developing various heart diseases increases. Although exercise is effective in controlling obesity, and the molecular mechanism of this effect is not well known. This study aims to identify, rank and analyse changes in the expression of key proteins in overweight individuals after aerobic exercise training. Materials and Methods: Transformed proteins expressed in skeletal muscle of overweight adolescents were analyzed in a protein-protein interaction network, using Cytoscape software. Key elements of the interactome and the biological processes associated with protein clusters were identified and analyzed. Results: Seven key genes and two important gene clusters related to the network were introduced. The elements of the first cluster were related to 30 important biological processes that control sugar and nucleotide metabolism. The NAD metabolic process was introduced as the most important biological process. Conclusion: Expression of seven key genes with various impacts is altered in overweight adolescents. The PKM gene, as the key gene, plays an important role in the activation of pyruvate. PGK1 was identified and introduced via the network analysis. Considering the importance of each of the seven genes identified and the related processes, the feasibility and ground work for possible drug treatment can be facilitated.

Keywords: Overweight, Exercises, Protein-protein interaction