تأثیر تمرین هوازی بر مقادیر آکوپورین7 (AQP7) بافت قریبی احشایی در موش‌های صحرایی تغذیه شده با غذای پرچرب

یاده‌نوری شورابی، دکتر انتظاری، دکتر قریبی، پرستویی نوین‌کاوی
گروه فیزیولوژی و رشد، دانشکده علوم و رشد، دانشگاه مازندران، گلستان.
پژوهش علوم پزشکی و خدمات بهداشتی- درمانی شهید بهشتی
دوره نوزدهم، شماره ۳، صفحه‌های ۱۱۵-۱۰۶ (خرداد - تیر ۱۳۹۸)

چکیده

مقامه: آکوپورین7 (AQP7) به عنوان یک عامل نیازمندی گلیسرولی از بافت قریبی در کنترل تجمیع تری کلولیدها در بافت قریبی و توسعه تغییرات مناسبی مربوط به آن نقش مهمی ایفا می‌کند. هدف مطالعه حاضر، تأثیر تمرین هوازی بر مقادیر AQP7 در بافت قریبی ایپیدیمال موش‌های صحرایی تغذیه شده با غذای پرچرب و غذای پرچرب (۱۴ درصد) در موش‌های صحرایی نیویل (۴ تا ۶ فیتنس) بر صورت تضامنی به دو گروه غذای نرمال (۱۲ درصد) و پرچرب (۱۴ درصد) تقسیم شدند. پس از ۱۰ هفته تغذیه با غذای نرمال یا پرچرب، به گروه زیر این کنترل (۷ درصد) و تمرین هوازی (۷ درصد) تقسیم شدند. برنامه تمرین هوازی شامل دوی دو دنیا درcdf ۱۰ متر در دقیقه به مدت ۱۰ هفته (۵ روز در هفته) بود. مقادیر AQP7 بافت قریبی ایپیدیمال استمرار غذای پرچرب افزایش یافته و در برخی از اندام‌ها و نقاط شاخه‌ای بافت نیز افت یافته بود.

واژگان کلیدی: آکوپورین7 (AQP7)، بافت قریبی ایپیدیمال، جاقی، تمرین هوازی، غذای پرچرب

مقدمه

چاقی و عوارض مرتبط با آن از قبیل دیابت نوع ۲ و بیماری‌های قلبی و عروقی به عنوان مشکلات زیادی سلامتی در نظر گرفته می‌شوند. ۱ خطر شیوع چاقی و سردر متابولیک مرتبط با آن طی دهه‌های اخیر افزایش یافته است. به طوری که ۱۷۱ میلیون نفر در سال ۲۰۰۰ مبتلا به دیابت نوع ۲ بودند و طبق پیش‌بینی سازمان بهداشت جهانی این میزان در سال ۲۰۲۰ به ۲۳۷ میلیون نفر افزایش خواهد یافت. ۲ فرزند- سازی نامزای قریبی یک از اجزای کلیدی ارتباط بین چاقی

- Aquaporin7 (AQP7)
چربی باشند، گروه پژوهشها در زمینه تأثیر تغذیه دانه بندی بر AQ7 در سایر موارد اصلی خود بر آزمایش صورت می‌گیرد. این دانشمندان تغییرات AQ7 در بقیه چربی احیا شده در پاسخ به این نشان دهنده کاهش ورزشی و صرف غذا در چربی به طور کامل بررسی نشده است. این رو، هدف مطالعاتی حاضر ارزیابی تأثیر تغییر AQ7 هوازی و غذای پچرب پر مقدار AQ7 در بقیه چربی احیا شده بود.

مواد و روش‌ها

در این پژوهش تجربی، پس از تأیید طرح تحقیق در کمیته اخلاق دانشگاه مازندران کد EC1148396، مجوز صحرایی آزمایش و استحکاماتی از موسسای روابط تهیه‌کننده از D&G که آزمایشگاه جویمانت دانشگاه علوم و رشته دانشگاه مازندران انتقال یافتند. این جهان‌نواز پس از هفته سازگاری به محيط آزمایشگاه ابتدایی به ۴ مدل مختلف (۶ سر در هر مدل) بر اساس همسان سازی وزنی تخصیص و سپس به طور تصادفی در گروه برای غذای نرمال (۱۴ سر) و دو گروه برای غذای پچرب (۱۶ سر) اختصاص دادند. پس از ۱۰ هفته تغذیه با غذای نرمال یا پچرب یک گروه از آنها به غذای گروه کنترل (۷ سر) و دو گروه دیگر با مقدار تغییرات AQ7 (۸ سر) در نظر گرفته شدند. در مجموع گروه آموزشی (۴) کنترل نرمال، (۳) کنترل با غذای پچرب و (۴) تمدن بالا غذای پچرب بودند.

این دانشگاه‌های احیا شده آماده AQ7 در فشارهای آماده و همانان

ارسنیت ناشناخته 17.5 فرم گلیسرول از دستگاه AQ7 به عنوان یک آگاگلیسیورین. باعث ثبت تقلید گلیسرول از غشا

دوبه‌اللیه آماده شد. در بقیه چربی، بیان AQ7 صورت مکروسکوپی است. به دلیل کاهش به طور که

انسولین از طریق مسر میکانیسم یک P3K به گروه AQ7

عصر پاسخ انسولین در منطقه بروموترون از بقیه

الکلیسپر موجود در پلاسما به عنوان دروازه اصلی گلیسرول

است. ۲۰ در بقیه به چربی خون محلول می‌شد.

نتایج

مطالعات مختلف نشان دهنده آنها AQ7 در تنظیم چربی

هوموتستات‌گری و بیماری‌های مرتبط با سندرم

متاپلیکس است. ۱۱ کمرب دیمان گلیسرول پلاسما و کاشه

تئورآک گلیسرول از بقیه چربی مؤثری که Zn آنها چربی بود. است. این مطالعه به معماری سالم

نشان دهنده نقش بارز این پروتئین از خاصیت گلیسرول از

غشا پلیمری باعث مایلی بهره‌برداری چربی

است. ۱۱

در راستای نقش بالقوه AQ7 بافت چربی، برخی مطالعات انسانی نشان داده که به مم

خوردن تنظیم بیان AQ7 بافت چربی می‌تواند در شیوع

چاقی و دیابت نوع ۲ نقش داشته باشد. در حاصل این

مطالعه نشان داده شد که کاهش گلیسرول در بقیه

پیشین این منطقه کروموزومی با دیابت نوع ۲ و سندرم

متاپلیکس در ارتباط است. ۱۳ مطالعات انسانی، نتایج

منطقی از آنرویی نسبت AQ7 بافت چربی در افراد دچار

اعراض چاقی و دیابت را را کرده‌اند. بعضی مطالعات

کاهش بیان mRNA آکروپورین ۷ نیز با چربی خون بالا

کره کبوده و افزایش بیان آن در بقیه چربی احیا

در افراد چاق نسبت به افراد وزن طبیعی در مطالعه

دیگری که در این مطالعه در این مطالعه نشان داده شد.

بیماری‌های متاپلیکس به‌سیله‌ای فعالیت بدنی از

طریق مکانیسم‌های مختلف رخ می‌دهد که شاید یکی از

سازوکارهای اختلال آن تغییرات میزان AQ7 در بقیه
جدول 1- ترکیب و میزان کالری غذای نرمال و پرچرب

<table>
<thead>
<tr>
<th>نوع غذا</th>
<th>پرچرب</th>
<th>نرمال</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتئین</td>
<td>22/1</td>
<td>17/4</td>
</tr>
<tr>
<td>کربوهیدرات</td>
<td>6/5</td>
<td>6/8</td>
</tr>
<tr>
<td>چربی</td>
<td>1/3</td>
<td>7/3</td>
</tr>
<tr>
<td>میزان انرژی در هر گرم (کیلوکالری)</td>
<td>27/3</td>
<td>24/8/3</td>
</tr>
</tbody>
</table>

برنامه تمرین هوازی شامل شمای دو بند به سرعت ۲۰ متر در میانه به مدت ۱۰ هفته (۵ روز در هفته) و ۲۰ تا ۳۰ دقیقه در هفته، انجام می‌شود. در هفته‌های اول، برنامه تمرین با سرعت ۱۲ متر در دقیقه و شیب ۴ درصد انجام می‌شود. در هفته‌های بعد سرعت به شدت در اساس توافق‌نامه‌های، به سرعت تدریجی در هر هفته به میزان ۱ تا ۲ متر در دقیقه اضافه شد که در هفتهٔ پنجم به سرعت ۲۰ متر در دقیقه

به‌طور خریداری شد. غذای پرچرب (۱۰ درصد کیلوکالری از پرچرب) بر اساس رژیم غذایی D14292، نهایی شد. غذای پرچرب در هر کیلوگرم حاوی زیست‌بی‌بی از ۷۷۷ گرم بود. غذای استاندارد، ۱۹ گرم ساکارز، ۲/۳ گرم مخلوط ویتامین، ۲/۱ گرم مخلوط مینال و ۲۴ گرم روغن نبیکه همین‌گونه که سایر غذای پرچرب در روغن حل شد و به توافهاً دسته مخلوط شده اضافه شد. سپس میزانی آپ و لرم به آن اضافه شد تا به خیم‌نتیجه‌ی شور و به استفاده از سنسی‌های سازدستی به پل تبدیل و خشک شده و غذای پرچرب هر هفته تهیه می‌شد. مقدار پرتوئین در هر کیلوگرم غذای پرچرب ۲۵۰ و در هر کیلوگرم، میزان کربوهیدرات با استفاده از مدل‌های بدنی و به روش فیزیولوژیک و درصد چربی نرمی و پرچرب استفاده می‌شود. غذای پرچرب درصد پروتئین، ۳/۲۳ درصد پرچرب، ۶۵/۷ درصد کربوهیدرات، ۷/۶ درصد کربوهیدرات، ۸/۷ درصد پروتئین، ۴۷/۳ درصد چربی و ۷/۶ درصد پروتئین، ۷/۶ درصد چربی و ۷/۶ درصد پروتئین

ii - Ethylene diamine tetra acetic acid
iii - Epididymal fat

برنامه تمرین هوازی شامل شمای دو بند به سرعت ۲۰ متر در میانه به مدت ۱۰ هفته (۵ روز در هفته) و ۲۰ تا ۳۰ دقیقه در هفته‌های اول، برنامه تمرین با سرعت ۱۲ متر در دقیقه و شیب ۴ درصد انجام می‌شود. در هفته‌های بعد سرعت به شدت در اساس توافق‌نامه‌های، به سرعت تدریجی در هر هفته به میزان ۱ تا ۲ متر در دقیقه اضافه شد که در هفتهٔ پنجم به سرعت ۲۰ متر در دقیقه
یافته‌ها

میانگین وزن اولیه جویانات یک هفته پس از سازگاری با محیط آزمایشگاه 137/9/2965-95/0 کم بود (جدول 1).

جدول 2- تأثیر تغذیه و تمرین هوازی بر وزن بدن، جرم اپیدئیدما و نسبت وزن چربی اپیدئیدمال به وزن بدن در موسه‌های صحراوی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>کروههای تغذیه شده با غذای پرچرب</th>
<th>کروههای تغذیه شده با غذای نرمال</th>
<th>کنترل</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن بیش از پروتکل تمرین</td>
<td>222/82 ± 32/99</td>
<td>222/82 ± 32/99</td>
<td>222/82</td>
<td>222/82</td>
</tr>
<tr>
<td>وزن نهایی (کرم)</td>
<td>178/21 ± 28/38</td>
<td>178/21 ± 28/38</td>
<td>178/21</td>
<td>178/21</td>
</tr>
<tr>
<td>تغییرات وزن (کرم)</td>
<td>45/10 ± 24/13</td>
<td>45/10 ± 24/13</td>
<td>45/10</td>
<td>45/10</td>
</tr>
<tr>
<td>وزن چربی اپیدئیدمال (کرم)</td>
<td>359/35 ± 26/15</td>
<td>359/35 ± 26/15</td>
<td>359/35</td>
<td>359/35</td>
</tr>
<tr>
<td>وزن نسبی چربی اپیدئیدمال</td>
<td>0/4 ± 0/4</td>
<td>0/4 ± 0/4</td>
<td>0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>(کرم بر 100 کرم وزن بدن)</td>
<td>1/4 ± 0/4</td>
<td>1/4 ± 0/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
</tbody>
</table>

در این مطالعه میزان اسکلروپلیمی فیبر نشان داد که در کروههای تغذیه شده با غذای پرچرب نسبت به کانترل، نسبت وزن بدن و جرم افزایش یافته، اما نسبت وزن چربی اپیدئیدمال باید کاهش یابد.

پیش از شروع مداخله تغذیه‌ای، تفاوت معنی‌داری در وزن بدن موش‌ها بین چهار گروه وجود نداشت (P=0/01). در هر دو گروه تغذیه شده با غذای پرچرب و نرمال نسبت به کانترل، نسبت وزن بدن و جرم افزایش یافته بود، اما نسبت وزن چربی اپیدئیدمال در هر دو گروه تغذیه شده با غذای پرچرب نسبت به کروههای تغذیه شده با غذای نرمال افزایش داشت (P=0/01). نتایج میانگین تغییرات وزن در گروههای تغذیه شده با غذای پرچرب نسبت به کروههای تغذیه شده با غذای نرمال پیش‌بینی نمی‌کند (P=0/01).

میانگین وزن چربی اپیدئیدمال و وزن نسبی چربی اپیدئیدمال نیز در کروههای تغذیه شده با غذای پرچرب نسبت به کروههای تغذیه شده با غذای نرمال بالاتر بود (P=0/01). در سه گروه تغذیه، نسبت وزن چربی اپیدئیدمال در گروههای تغذیه شده با غذای پرچرب در مقایسه با کروههای تغذیه

پیش از شروع مداخله تغذیه‌ای، تفاوت معنی‌داری در وزن بدن موش‌ها بین چهار گروه وجود نداشت (P=0/01). در هر دو گروه تغذیه شده با غذای پرچرب و نرمال نسبت به کانترل، نسبت وزن بدن و جرم افزایش یافته بود، اما نسبت وزن چربی اپیدئیدمال در هر دو گروه تغذیه شده با غذای پرچرب نسبت به کروههای تغذیه شده با غذای نرمال افزایش داشت (P=0/01). نتایج میانگین تغییرات وزن در گروههای تغذیه شده با غذای پرچرب نسبت به کروههای تغذیه شده با غذای نرمال پیش‌بینی نمی‌کند (P=0/01).

میانگین وزن چربی اپیدئیدمال و وزن نسبی چربی اپیدئیدمال نیز در کروههای تغذیه شده با غذای پرچرب نسبت به کروههای تغذیه شده با غذای نرمال بالاتر بود (P=0/01). در سه گروه تغذیه، نسبت وزن چربی اپیدئیدمال در گروههای تغذیه شده با غذای پرچرب در مقایسه با کروههای تغذیه
چربی اپیدیمیال در گروه‌های تغذیه شده با غذای پرچرب (7/31±0/03) نسبت به گروه‌های تغذیه شده با غذای نرمال (12/22±0/04) کمتر بود (P=0/03). تمرین هوازی باعث افزایش معنی‌داری در مقادیر AQP7 بنا به چربی اپیدیمیال شد (P=0/02). اثر تعاملی تغذیه و تمرین هوازی بر مقادیر AQP7 معنی‌دار نبود (P=0/879).

نمودار 1- مقادیر پروتئین لیپیدی پلاسمایی در گروه‌های مختلف پزوهش. داده‌ها به صورت میانگین±انحراف معیار اورده شده است. * تأثیر غذای پرچرب (P<0/05); ** تأثیر تمرین هوازی (P<0/05).
نمودار ۲- سطوح شاخصهای متابولیکی بالاسمایی در کروههای مختلف پژوهش. داده‌ها به صورت میانگین±انحراف معیار آورده شده است. * تأثیر غذای پرچرب (۰/۰۵)؛ † تأثیر تمرین هوازی (۰/۰۵)。<p>نمودار ۳- مقادیر آکوژورین۲ در بافت چربی اپیدیدیمیال. داده‌ها به صورت میانگین±انحراف معیار آورده شده است. * تأثیر غذای پرچرب (۰/۰۵)؛ † تأثیر تمرین هوازی (۰/۰۵).
بحث

هدف تحقیق حاضر، بررسی تأثیر تمرين هوازي بر مقاير آكرپورین 7 در بافت چربی احشای موش‌هاي صحرایي بوده شده با یگه پرچب بوده از میهمتین بهانه‌هاي اين مطالعه، کاهش مقاير آكرپورین 7 در بافت چربی احشای بر اثر مصرف غذای پرچب و افزایش مصرف این سلول‌ها در بافت فوق به نمای تمرين هوازي بود.

نتایج مطالعات پيش نشان دهندي نقش كليه آكرپورين 7 به عنوان کنترل تراوالي گلیسرول در متابولیسم بانسي چربی است. از كنون و همكارانش نشان دادند که جهت در زن پروتين گلیسرول موجب شدن افزایش گلیسرول پلاسما بر اثر غذای پرچب می‌شود. همچنین، گلدناس این دسته و افزایش گلیسرول از بافت چربی است. به‌طور جالب تجویز یافته برای مقاير آكرپورین 7 به‌طوری که در شرایط غذایی این بافت چربی در بافت چربی افزایش و پس از تغیير کاهش می‌یابد. همچنین گلدناس طی پژوهشی دریافتند که سرکوب از 7 از می‌توان به گلیسرول و گلیسرول باعث شیوعざی و دوز در مدل‌های موش. به‌نادرین تظیم بیان و مقایسه این کنترل پروپتین در جلوگیری از چاقی و اخ Barth حاضر است. تحقیق بخش به نباید به نمای سنت.

در مطالعات حاضر، افزایش وزن بدن و وزن چربی اپیدیمیال سلول‌ها نشان می‌دهد که مقاير آكرپورین 7 باعث اثر تغییر به غذای پرچب می‌شود. از نظر انسولین سلول‌ها در بافت چربی از اثر این سلول‌ها می‌شود. به‌طوری که در بافت انسولین منطقه پروپتین 7 باعث سرکوب 7 پروپتین آكرپورین 7 و کاهش میزان این پروپتین در بافت
نتایج مطالعات نشان دهنده توصیع قبیل از افزایش هایپرتوسیمی و افزایش از مقدار آکوپروپرین ۲ باید از مورد توجه و تحقیق باشد.

نتایج مطالعات نشان دهنده توصیع قبیل از افزایش هایپرتوسیمی و افزایش از مقدار آکوپروپرین ۲ باید از مورد توجه و تحقیق باشد.

نتایج مطالعات نشان دهنده توصیع قبیل از افزایش هایپرتوسیمی و افزایش از مقدار آکوپروپرین ۲ باید از مورد توجه و تحقیق باشد.

نتایج مطالعات نشان دهنده توصیع قبیل از افزایش هایپرتوسیمی و افزایش از مقدار آکوپروپرین ۲ باید از مورد توجه و تحقیق باشد.
می‌توان از افزایش مقدار AAQP7 بافت چری احتمالاً در جلوگیری از هایپوتوسیس پروتئین 7 اثرات مثبت برای کاهش درد و سطح مصرف آدامب مرتبط با آن ناشی می‌شود. با این‌حال، در پازنی، متاپولیک، نیز تنظیم بین و میزان این نوع پروتئین (AAQP7) در بافت چربی با ترمیم‌های ورزشی می‌تواند به عنوان یک هدف درمانی جالب برای مصرف کننده والی و بیماری‌های متاپولیک مرتبط با آن در نظر گرفته شود. هر چند مطالعات گسترده‌ای جهت شناسایی نقش دلی شنو ویژگی‌های ورزشی در تنظیم بین و میزان پروتئین AAQP7 در بافت چربی، کنترل تجربه جمله‌ای سوء فشار کروز و یک درک علمی است که موردنیاز است.

References

Abstract

Introduction: Aquaporin 7 (AQP7), as a glycerol permeable channel of adipose tissue, plays an important role in controlling triglycerides accumulating in adipose tissue and the development of obesity and its related metabolic disorders. The aim of this study was to evaluate the effect of aerobic exercise training on epididymal adipose tissue AQP7 content in rats fed a high fat diet.

Materials and Methods: Twenty-eight male Wister rats (4-6 weeks) were randomly divided into two groups: Normal diet (14) and high fat diet (14). After 10 weeks of feeding with normal or high-fat food, each of the groups were divided into two groups: control (7) and training (7). Rats in the training groups were subjected to running on the treadmill at a speed of 20 meters per minute for 10 weeks (5 days per week) and their epididymal adipose tissue AQP7 content and insulin were assessed by Elisa. Plasma levels of glucose and lipid profile, as well as insulin resistance index (HOMA-IR) were also measured.

Results: Body weight, epididymal fat weight, plasma insulin levels and insulin resistance index increased in rats, fed with a high fat diet (P<0.05). Epididymal adipose tissue AQP7 content decreased due to compliance with the high fat diet (P=0.003); however aerobic exercise training increased AQP7 in both normal and high fat diet groups(P= 0.003). This training program improved plasma levels of glucose, insulin and lipid profiles, as well as HOMA-IR (P<0.05).

Conclusion: These results indicate that aerobic exercise training could improve metabolic status by increasing adipose tissue AQP7 content.

Keywords: Aquaporin7, Epididymal adipose tissue, Obesity, Aerobic exercise training, High fat diet