استقامت عضلات مفصل ران در بیماران مبتلا به دیابت نوع 2 BA و بدون ابتلا به نوروباتی محيطي

چکیده

مقدمه: دیابت نوع 2 بیماران محروم از کنترل نشده، عوارض مختلفی از قبیل اختلالات عضلاتی اسکلتی و نوروباتی محيطي را به دنبال خواهد داشت. نتایج طالعات کلینیکی عضلات بیماران مبتلا به دیابت نوع 2 نشان داد که این افراد استقامت عضلات پایینتری نسبت به افراد سالم دارند. هدف از این مطالعه، بررسی میزان استقامت ایزومتریک عضلات اکستارسور و اباکتور فصل ران در افراد مبتلا به دیابت نوع 2 BA در مقایسه با دیابت نوع 2 BA و بدون ابتلا به نوروباتی محيطي، نشان داد که استقامت ایزومتریک اکستارسور و اباکتور عضلات مفصل ران در مبتلا به دیابت نوع 2 BA با دیابت نوع 2 BA متفاوت می باشد. مدت زمان استقامت ایزومتریک در فاز غیر افزایشی به ترتیب، 20 دقیقه می‌باشد. در نتیجه، احتمال سایر لیپید‌های اتفاقی عضلات در بیماران دیابتی BA تا حدی توجه برقرار گردید و آزمون‌ها استقامت ایزومتریک در فاز غیرازیبی به ترتیب نمی‌توان استقامت عضلات در بیماران مبتلا به دیابت نوع 2 BA را واحده مساوی قرار دهد.

واژگان کلیدی: دیابت نوع 2، عضلات، استقامت، نوروباتی محيطي

دریافت مقاله: 25/2/96 - پذیرش مقاله: 27/9/96 - دریافت اصلاحی: 20/12/95

مقدمه

دیابت نوع 2 بیماری متولیک مزمن است که به فرمولیون با نیزه بعدی سخت‌نگار و حدود 90 درصد از کل بیماران مبتلا به دیابت را به خود اختصاص می‌دهد. آین دیابت نوع 2 تحت عنوان مقاومت به اسکلروز شناخته می‌شود که در صورت عدم کنترل مناسب آن، عوارض مختلفی از جمله عوارض اسکلتی- عضلانی، به وجود می‌آید. به نظر می‌رسد حدود 20% از بیماران مبتلا به دیابت نوع 2 اختلالات عضلاتی اسکلتی را در طول زندگی آن‌ها تجربه می‌کنند.

i - Glycolytic
ii - Neurotrophic
استقامت عضلانی در بیماران مبتلا به دیابت نوع ۲

در سیستم ارزیازی، استقامت عضلات اکستروسور و دویورسی فلکسور ها معیار اول در افراد مبتلا به دیابت نوع ۲ است. در این مطالعه، بررسی میزان استقامت عضلات مفصل ران در بیماران مبتلا به دیابت نوع ۲ مطالعات محدودی در سردرس انجام گرفته است. در این مطالعه، بررسی میزان استقامت ایزومتریک عضلات اکستروسور و ابادکش مفصل ران در افراد مبتلا به دیابت نوع ۲ در موارد طولانی، قدرت استقامت و استقامت کنترل در عضلات فلکسور و اکستروسور زانو، و پالانترور و دورسی فلکسور کیا به بیماران مبتلا به دیابت نوع ۲، به خصوص افرادی که به نوروبیات عضلات مفصل ران برونیم و ایزومتریک استقامت عضلات مفصل ران به طور وضوح در بیماران کاهش گرفت.

یکی از علل دانش که بیماران کاهش اکستروسور و ابادکش کیا در مقاله اول است.

به طور خلاصه، دیابت نوع ۲ در طولانی مدت، استقامت گروه‌های عضلانی در ادامه تحت تاثیر و ویژه به شرایط پویا، را تغییر می‌دهد. در مطالعات و بررسی‌های مختلف گزارش شده است که استقامت و استقامت عضلات مفصل ران به طور واضح در بیماران مبتلا به دیابت نوع ۲ باید تغییر داشته باشد.

ویژه‌ترین علل برای کاهش استقامت عضلات مفصل ران در بیماران مبتلا به دیابت نوع ۲ در پرداختن‌های محدود است. در این مطالعه، قیلی گیرش فلکسور کیا، ابادکش کیا و اداکشن مفصل ران در بیماران مبتلا به دیابت نوع ۲ (با ابادکش کیا و بدون ابادکش کیا) در ادامه‌کیا نشان داد که بیماران کاهش استقامت و ابادکش کیا در مقاله اول دارند.

است. ۱۲ به طور خلاصه، نسبت فیبرهای نوع ۲ به فیبرهای نوع ۱ در عضلات این دسته بیماران افزایش می‌یابد که این عامل باعث کاهش استقامت عضله و افزایش میزان خستگیپذیری عضلات می‌شود. ۹ به مقدار استقامت و خستگیپذیری عضلات مفصل ران در بیماران مبتلا به دیابت صورت گرفته است. لیکن بر این اساس، بیماران مبتلا به دیابت نوع ۲ نسبت به افزایش سطح خستگیپذیری، ۲۰ تکرار اکستروسور زانو باعث افزایش نسبی در خستگیپذیری کارکرده است. ۱۰ این نتایج به استحکام استقامت عضلات مفصل ران در بیماران مبتلا به دیابت طولانی مدت، قدرت استقامت و استقامت کنترل در عضلات فلکسور و اکستروسور زانو در مقایسه با افراد غیر دیابتی دارند. ۱۱ به طور خلاصه است. ۱۲

- Fast twitch and fatigue irresistible fiber
بیش از (30) نوآور قلی عروقی و داشتن فعالیت ورزشی

مستمری.

<table>
<thead>
<tr>
<th>بیماران</th>
<th>جمع‌آوری اطلاعات زمینه‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>i - Nerve conduction velocity</td>
<td></td>
</tr>
<tr>
<td>ii - Isokinetic biodex</td>
<td></td>
</tr>
<tr>
<td>iii- Femur</td>
<td></td>
</tr>
</tbody>
</table>

در این مطالعه، از دستگاه ایزوکینتیک بازیودکس مدل pro 4 ساخت کانرس آمریکا استفاده شد. این دستگاه از پیشرفته‌ترین و قابل اعتمادترین تکنولوژیا برای آزمون دقیق و استقامت عضلات اسکلتی محسوب می‌شود. به طوری که قادر است قدرت ایزوکینتیک، کاستریکیک ایزوکینتیک و ایزوکینتیک مفاصل را در زاویا و سرعت‌های مختلف با دقت بالا اندازه‌گیری کند. (شکل 1)

شکل 1 - فضای آزمایشگاهی و دستگاه ایزوکینتیک بازیودکس

آزمون استقامت عضلات

به منظور ثبت استقامت عضلات اکستروسور ران، فرد در حال خوابیده به پشت قرار می‌گرفت و تنه و اندام تحتانی مقابلاً با کمرین راست می‌شد. محور چرخش کمی جلو و بالای تواترکنگ برزگ استخوان ران و/یا تواترکنگ در پشت ران بایان زاویه قرار می‌گرفت. ران در وضعیت فلکش 15 درجه و زاویه در فلکش 90 درجه قرار می‌گرفت. (شکل 2). برای آزمون استقامت عضلات اکستروسور ران، فرد به پله خوابیده و پای امیدآور ران در بالا قرار داده شد. پای مقابل و تنه روی حضور استرپ تای می‌شد. محور چرخش کمی جلو و بالای تواترکنگ برزگ استخوان ران و/یا تواترکنگ در خارج و دیستال ران روی کوتکنگ خارجی استخوان ران قرار می‌گرفت. در 30 درجه ایولدانک و در فلکش و روتیشن صفر درجه قرار داشت و زاویه در صفر درجه فلکش بود. (شکل 3) آزمون 3 بار انجام می‌شده و از فرد خواسته می‌شود تا بیش از 30 دقیقه دو نارنجی می‌کند. آزمون گروه 5 دیپ تا دو نارنجی ثابت رکاب را در نظر بود. استریت عضلات فلکسور و اکستروسور مفصل ران محرک می‌شود به مدت 20 ثانیه انجام شد. توصیه‌های عروقی و داشتن فعالیت ورزشی

مستمری.

<table>
<thead>
<tr>
<th>بیماران</th>
<th>جمع‌آوری اطلاعات زمینه‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>i - Nerve conduction velocity</td>
<td></td>
</tr>
<tr>
<td>ii - Isokinetic biodex</td>
<td></td>
</tr>
<tr>
<td>iii- Femur</td>
<td></td>
</tr>
</tbody>
</table>
بی‌่อนکه تغییری در وضعیت زانو ایجاد شود. بین هر ۱۵ ثانیه انتخاب، ۱ دقیقه استراحت در نظر گرفته شده بود.

شکل ۲ - نحوه انتخاب کری آستانسور یوزومتریک عضلات

شکل ۳ - نحوه انتخاب کری آستانسور یوزومتریک عضلات

١- گروه غیر دیابتی

۲- گروه دیابتی با نوروپاتی

٣- گروه دیابتی نوروپاتی

نوسان‌شناسی استخوان عضلانی نمونه‌کار داشته‌باشند. عضلات اکستنشور و ابیکتور مفصل ران در برای زمانی ۱۵ ثانیه برای هر سه تکرار توسط

شماره ۱: گروه غیر دیابتی

شماره ۲: گروه دیابتی با نوروپاتی

شماره ۳: گروه دیابتی نوروپاتی

بافت‌ها

همانطور که قبل ذکر شد، نمونه‌هایی که در اکستنشور اکسل محسوب و ثبت شد، نمونه‌هایی که در ابیکتور مفصل ران و اکستنشور اکسل محسوب و ثبت شد، مورد آزمون ANOVA (Analysis of Variance) قرار گرفتند. این آزمون به منظور بررسی اختلاف میانگین متحرک‌های مورد مطالعه بین سه گروه از آزمون تحلیل واریانس (ANOVA) و از آزمون تعمیق بیون فرونویست دقیقاً شد. همچنین سطح معناداری در تحقیق حاضر، آلфа کروکچکتر از ۰.۰۵ در نظر گرفته شد.
میزان استقامت عضلات ایستایی و ابیکتور مفصل ران بین سه گروه مورد مطالعه تفاوت معنی‌داری نداشت.

(عضلات ایستایی گروه شاهد=8/7، گروه دیابتی با ابتلا به نورپیاتین=8/5، گروه گروه دیابتی بدون ابتلا به نورپیاتین=8/5(جدول 2)

نمودار 2- ثبت نمودار کاهش توان در آزمون استقامت عضلات ایستاییی مفصل ران در سه گروه مورد مطالعه محور افقی نشان دهنده زمان است و محور عمودی کشتار عضله را نشان می‌دهد.

جدول 1- مقادیر میانگین و انحراف معیار شاخص‌های جمعیت شناختی در سه گروه غیر دیابتی، مبتلا به دیابت نوع 2 با و بدون ابتلا به نورپیاتین می‌باشد.
جلد 2 - نتایج آزمون آنالیز واریانس (ANOVA) برای مقایسه استقامت عضلات اکسترانسور و ابداکتور مفصل ران بین سه گروه مورد مطالعه و میانگین حداکثر شیب نمودار عضلات

<table>
<thead>
<tr>
<th>متغیر</th>
<th>دیابتی بدون میتلا به ترورپاتی (تعداد=15)</th>
<th>دیابتی با میتلا به ترورپاتی (تعداد=15)</th>
<th>دیابتی بدون میتلا بدون ترورپاتی (تعداد=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>حداکثر شیب نمودار استقامت</td>
<td>0.47 ± 0.65</td>
<td>0.76 ± 0.85</td>
<td>0.92 ± 0.74</td>
</tr>
<tr>
<td>حداکثر شیب نمودار ابداکتور</td>
<td>0.77 ± 0.85</td>
<td>0.92 ± 0.74</td>
<td>0.92 ± 0.74</td>
</tr>
</tbody>
</table>

بحث

مقیار حداکثر شیب نمودار کاهش قدرت در سه گروه غیردیابتی، بیماران میتلای به دیابت نوع 2 بدون ترورپاتی محیطی و بیماران میتلای به دیابت نوع 2 با ترورپاتی محیطی نمودار شده‌اند. در این مطالعه، استقامت اکسترانسور و ابداکتور مفصل ران در وضعیت ایزومتریک مورد بررسی قرار گرفت و نتایج مطالعه مشابه با این روش بر روی بیماران میتلای به دیابت نوع 2 صورت نگرفت است. مطالعات مختلف با روش‌های متفاوت نشان دادند که بیماران میتلای به دیابت نوع 2 استقامت عضلات کتکی دارند.

فعالیت الکترومیوگرافی عضله وستوس لترالیس به صورت ایزومتریک در بیماران میتلای به دیابت نوع 1 نشان داد که افراد دیابتی استقامت عضلات کتکی نسبت به افراد غیر دیابتی دارند.

<table>
<thead>
<tr>
<th>متغیر</th>
<th>دیابتی بدون میتلا به ترورپاتی (تعداد=15)</th>
<th>دیابتی با میتلا به ترورپاتی (تعداد=15)</th>
<th>دیابتی بدون میتلا بدون ترورپاتی (تعداد=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>حداکثر شیب نمودار استقامت</td>
<td>0.47 ± 0.65</td>
<td>0.76 ± 0.85</td>
<td>0.92 ± 0.74</td>
</tr>
<tr>
<td>حداکثر شیب نمودار ابداکتور</td>
<td>0.77 ± 0.85</td>
<td>0.92 ± 0.74</td>
<td>0.92 ± 0.74</td>
</tr>
</tbody>
</table>

در این وضعیت، بیماران میتلای به دیابت نوع 2 توانایی حفظ حداکثر گشتاور ایزومتریک محدود‌کننده‌ای را در بازه‌های
References

Original Article

Hip Joint Muscle Endurance in Patients with Type II Diabetes with and Without Peripheral Neuropathy

Abadi L¹, Azghani MR², Salahzadeh Z¹, Rezaei M¹, Eteraf Oskuie A³

¹Faculty of Rehabilitation, Tabriz University of Medical Science, Tabriz, ²Biomechanics Department, Faculty of Biomechanics Engineering, Sahand University of Technology, Tabriz, ³Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Science, Tabriz, I.R. Iran

e-mail: salahzadeh@tbzmed.ac.ir

Received: 14/01/2017 Accepted: 17/05/2017

Abstract

Introduction: Type II diabetes is a chronic disease, which if not controlled properly, can have complications, such musculoskeletal complications. Kinematics studies of muscle endurance of patients with type II diabetes demonstrate lower muscle endurance in these individuals. The aim of this study was to evaluate the isometric endurance of hip extensor and abductor muscles in people with type II diabetes in two groups, i.e with and without the risk of peripheral neuropathy in comparison with healthy people. Method and Materials: Fifteen healthy subjects and 27 patients (in three groups) with type II diabetes (15 patients without peripheral neuropathy and 12 patients with peripheral neuropathy) participated in this study. Isometric endurance of the hip extensor and abductor muscles was recorded using the Biodex isokinetic machine and slope of the power diagram was calculated. Results: Results showed no significant differences for the diagram slope between the three groups in terms of hip extensor and abductor muscle endurance. (Extensor diagram slope, P=0.45) (Abductor diagram slope, P=0.63). Conclusion: Endurance related parameters of hip extensor and abductor muscles in patients with type II diabetes, with or without peripheral neuropathy, are not significantly different from those of healthy subjects. Hence, the isometric endurance test perse cannot describe muscle endurance in type II diabetic patients.

Keywords: Type II diabetes, Hip, Muscle, Endurance, Peripheral neuropathy