بررسی اثر مصرف کشمش بر برشی فاکتورهای انعقادی و ظرفیت تام آنتی اکسیدانی در بیماران مبتلا به هیپرلیپیدمی: کارآزمایی بالینی

شاهدتلاب تصدیفی شده

دکتر فریده شیشه‌پور، د. پرورن جولاب، دکتر نوشیزی اسد مسجدی، دکتر اعظم صادقی نیا، دکتر امید ساکی مالحی

دکتر مهدی علی جلالی فر، دکتر اعظم دهوری

چکیده

غذای پالی‌فیبره‌های همسانیک در خون با عطر افزایش یافته بیماری‌های قلبی عروقی مرتبط هستند. کشمش حاوی ترکیبات پلیفنی است که می‌تواند عطر بیماری‌های قلبی عروقی را کاهش دهد. در این مطالعه، تاثیر کشمش سیاه و رزی کرده در بخش فیبره‌های مصرفی (TAC) در بیماران مبتلا به هیپرلیپیدمی بررسی شد. در این مطالعه، 120 بیمار مبتلا به هیپرلیپیدمی به مطالعه پیوستند. داده‌ها با آزمون تی مستقل و تی روزی و تحلیل دانسته شدند. نتایج مطالعه نشان می‌داد که تأثیر کشمش و رزی در افزایش مصرف ترکیبات پلیفیبرهای ترومبین، کاهش ترکیبات پلیفیبرهای ترومبین، کاهش ترکیبات پلیفیبرهای ترومبین و کاهش ترکیبات پلیفیبرهای ترومبین در بیماران مبتلا به هیپرلیپیدمی وجود داشت. برای مقایسه این نتایج، گروه کنترل (TAC) در این مطالعه به کار برده شد. نتایج نشان می‌دهد که مصرف کشمش سیاه و رزی در بیماران مبتلا به هیپرلیپیدمی بهبود غذایی منجر به کاهش ترکیبات پلیفیبرهای ترومبین و کاهش ترکیبات پلیفیبرهای ترومبین در بیماران مبتلا به هیپرلیپیدمی است.
مقدمه

آنترواسکوز اعیانی و پیش‌گیری از آن، نهایتاً، باعث درک‌کردن این سلول‌های پاتولوژیک می‌شود. چنانچه این آنترواسکوز‌های اعیانی ناشی از آنزیم‌ها و پروازنده‌های لیپیدی می‌باشد.

مواد و روش‌ها

در این پژوهش، درآزمایش‌های نمونه‌گیری صورت گرفت. نمونه‌گیری از افرادی که دارای آنترواسکوز و یا عوامل آنترواسکوز و ملایمینه بودند، صورت گرفت. تصمیم بر این بود که افزایش درد و علائم در جریان این آنترواسکوز باعث می‌شود.

x - Total antioxidant potential
xi - Fibrinogen
xii- Total antioxidant capacity
xiii- American Heart Association
xiv- Total cholesterol
xv- Triglyceride

i- Atherosclerosis
ii- Phenolic compounds
iii- Flavonoids
iv- Vitis vinifera
v- Low Density Lipoprotein Cholesterol
vi- Quercetin
vii- Kaempferol
viii- Catechin
ix- Resveratrol
عدم ورود به مطالعه عبارت بودند از ابتلا به بیماری‌های التهابی مانند نقرس، آرتریت روماوتوندی، انتهای مشخص‌کننده‌ی رئیسی کلیوئید، هم‌بینی بروگی، چربی وزنی، هم‌بینی به موارد بالینی که موجب درد سلام می‌شود، عوامل قابل بررسی به‌رساندن در این دستگاه‌ها می‌باشد. مصروف انگیژه‌ها در نتیجه‌ای از این بیماری‌ها به‌وسیله آسان‌ترین و سریع‌ترین روش بررسی در داخل مراقبت روماهای اولیه و انتقال به مرکز مراقبت‌های بهداشتی نموده می‌شود.

vi- Zellbio
vii- Auto Analyzer Alpha-Classic
viii- Friedewald Formula
ix- Metabolic Equivalents
x-24-hour dietary recall

\(\text{iv- Body mass index} \)

\(\text{i- Gout} \)

\(\text{ii- Rheumatoid arthritis} \)

\(\text{iii- Myocardial infarction} \)

\(\text{v- Hemosil} \)

\(\text{vii- Auto Analyzer Alpha-Classic} \)

\(\text{viii- Friedewald Formula} \)

\(\text{ix- Metabolic Equivalents} \)

\(\text{x-24-hour dietary recall} \)
میزان کل ترکیبات فنی کشمش به روش کشاورزی
فولی سیکالیک و با استفاده از آزمایشگاه داروسازی دانشگاه علوم پزشکی
جنگل شاهور اهواز سنگین شد. جهت رسم منحنی استاندارد
از استانداردهای شرکت دارو و نتایج به حساب می‌گراید.

اسید در هر کرم صادره‌های خشک بیان شده.

تحلیل آماری:
تحلیل آماری داده‌ها با استفاده از نرم‌افزار SPSS
16 انجام شد. داده‌ها به صورت میانگین‌انحراف معیار
آورده شدند. توزیع داده‌ها از نظر نرمال بودن با استفاده
از آزمون آماری کولموگروف- اسمیرنوف تعیین شد که
توزیع متغیرهای فاکتور هفت تی‌گلسری، کربوهیدرات،
سطح فعالیت دندی، دری مولی و چربی غیر نرمال بود.
برای آزمون تفاوت بین میانگین متغیرهای کمی در گروه
داخل خود گروه در صورتی که آزمون تی مستقل و
در صورت غیرنرمال بودن از آزمون نم
من ویتین استفاده شد. برای مقایسه
میانگین‌های یک
متغیر بیل بعد از مطالعه در نرمال بودن داده‌ها از
تی زوجی و در صورت غیرنرمال بودن از ویکالسون
استفاده شد. با توجه به اینکه سطح کلسیتور
احداث اطلاعات خواسته شد.

پنی‌مردان تلی. گروه ۱۲۰ و
کشمش مورد بررسی شاه میزان رطوبت
خاک‌شناسی روش سوسک‌های (روش کندال) و
و فیبر در استاندارد از روش‌های استاندارد در آزمایشگاه
شیمی مواد غذایی دانشکده پیشرفت دانشگاه علوم پزشکی
جنگل شاهور اهواز تغییر دادند. ۳۰ میزان کربوهیدرات از
تقریباً م равноس معنی‌دار با داده‌های پژوهش‌گری شده ۱۰۰ محسوب

جدول ۱- ترکیبات شیمیایی در ۱۰۰ کرم کشمش سیاه

| رنگ | مقدار | واحد | رمزنامه
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>آنتژ (کلکالی)</td>
<td>۳۰/۸۲</td>
<td>گربه‌پرور (درصد)</td>
<td>۷۴/۹۹</td>
</tr>
<tr>
<td>گربه‌پرور (درصد)</td>
<td>۲۷/۲۱</td>
<td>چربی (درصد)</td>
<td>۵/۱</td>
</tr>
<tr>
<td>چربی (درصد)</td>
<td>۲</td>
<td>ویترین (درصد)</td>
<td>۱/۵</td>
</tr>
<tr>
<td>ویترین (درصد)</td>
<td>۳</td>
<td>فلورتیون (درصد)</td>
<td>۱/۱۰</td>
</tr>
<tr>
<td>فلورتیون (درصد)</td>
<td>۱۰</td>
<td>کاهشگر (میلی‌گرم بر گرم)</td>
<td>۱۰/۱۸</td>
</tr>
</tbody>
</table>

i- Soxhlet
ii- MicroKjeldahl
دعاوت از ۵۵ فرد مبتلا به هایپرلیپیدمی جهت شرکت در مطالعه

۱۵ نفر از مطالعه خارج شدند:
۱۱ نفر به دلیل نداشتن معیارهای ورود به مطالعه
۴ نفر عدم تامین به ادامه همکاری و شرکت در مطالعه

۴۰ نفر به طور تصادفی در دو گروه مداخله و شاهد قرار گرفتند

گروه شاهد (۲۰ نفر)
گروه کشمش (۲۰ نفر)

خروج دو نفر نظر بدلیل عدم تامین به ادامه همکاری

۵ هفته مداخله

۱۸ نفر پوزش را به پایان رساندند

۵ هفته مداخله

۲۰ نفر پوزش را به پایان رساندند

شکل ۱- نحوه انتخاب و وضعیت بیماران در طول مطالعه
جدول 2- ویژگی‌های عمومی افراد مورد مطالعه در دو گروه مصرف کننده کشمش و غیر کانونه‌ای

<table>
<thead>
<tr>
<th>مخرب</th>
<th>کروه کنترل (8 نفر)</th>
<th>کروه کشمش (20 نفر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سن (سال)</td>
<td>28/19±7/63</td>
<td>24/8±6/07</td>
</tr>
<tr>
<td>زن</td>
<td>2/22</td>
<td>3/21</td>
</tr>
<tr>
<td>مرد</td>
<td>1/78</td>
<td>6/88</td>
</tr>
<tr>
<td>کلسیم</td>
<td>150/17±24/39</td>
<td>389/1±1/49</td>
</tr>
<tr>
<td>ت، غلاتی</td>
<td>0/19±1/83</td>
<td>0/19±1/83</td>
</tr>
<tr>
<td>کلسیم</td>
<td>300/1±1/23</td>
<td>389/1±1/49</td>
</tr>
<tr>
<td>ت، غلاتی</td>
<td>0/19±1/83</td>
<td>0/19±1/83</td>
</tr>
</tbody>
</table>

اماده به صورت میانگین±انحراف معیار بین شده: ت، آزمون تی استقلال با کاهی دو

اختلاف معنی‌داری وجود نداشت. داده‌های مربوط به دریافت در دو گروه، در ابتدای مطالعه از نظر میانگین غلظت سرم فیبرینوژن، فاکتور هفت انعقادی، ظرفیت تام آنتی‌کسیدانی، دریافت های غذایی و میزان فعالیت فیزیکی

جدول 3- اطلاعات دریافت غذایی و فعالیت فیزیکی بیماران هایپرلپیدمبی در هفته اول و هفته پنجم مداخله با کمک سیاه سیاه
در یافت گروه‌های تلفات معنی‌دار از نظر میزان تغییرات ناحیه ارثی در پاتولوژی سطوح و موارد مواد غذایی به جز پروتئین می‌تواند شده، آنلاین دریافت‌های غایبی نشان داد که در گروه مطالعه بین دور انتخابی و انتزاعی در گروه راهکار بهبود در میزان راهکار به طور معنی‌دار افزایش داشته است. (به ترتیب 0.01<). اما در

جدول ۳- مشخصات بیماران مبتلا به هایپرلیپیدمی در ابتدا و پایان مطالعه در گروه مصرف‌کننده کشم سیاه و گروه شاهد

<table>
<thead>
<tr>
<th>گروه کشت (۲۰ نفر)</th>
<th>گروه کشت (۸۰ نفر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تغییرات قبل از مداخله</td>
<td>تغییرات قبل از مداخله</td>
</tr>
<tr>
<td>بین مصرف‌کنندگان</td>
<td>بین مصرف‌کنندگان</td>
</tr>
<tr>
<td>درون کروم</td>
<td>درون کروم</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>۲۰</td>
<td>۸۰</td>
</tr>
<tr>
<td>۰.۰۷</td>
<td>۰.۰۶</td>
</tr>
<tr>
<td>۰.۰۶</td>
<td>۰.۰۵</td>
</tr>
<tr>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
</tr>
<tr>
<td>۰.۰۴</td>
<td>۰.۰۳</td>
</tr>
<tr>
<td>۰.۰۳</td>
<td>۰.۰۲</td>
</tr>
<tr>
<td>۰.۰۲</td>
<td>۰.۰۱</td>
</tr>
<tr>
<td>۰.۰۱</td>
<td>۰.۰۰</td>
</tr>
<tr>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
</tr>
</tbody>
</table>

备注：根據《標準化統計學術語》“在有顯著差異的組內，用Kruskal-Wallis H檢定。...用Kruskal-Wallis H檢定，...在有顯著差異的組內，用Kruskal-Wallis H檢定...在有顯著差異的組內，用Kruskal-Wallis H檢定...在有顯著差異的組內،
کشمش بررسی فعالیت‌های انتقایی و ظرفیت آنتی اکسیدانی

در رفتار تغذیه TAC در رفتار تغذیه شده با پوست آنکور و کاهش شناسایی انتسه اکسیدانی با سلول‌ها گروهی الگویی که بر روی آنکور و کاهش شناسایی انتسه اکسیدانی پیوسته در تغذیه تغذیه شده با پوست آنکور و کاهش شناسایی انتسه اکسیدانی نیز مثبت است. (P<0.05)

یافته‌ها نشان داد که مصرف روزانه گری کم کشمش سیب‌سالار، فروسر و انتسه اکسیدانی می‌باشد. اگر این مصرف روزانه با سلول‌های الگویی که بر روی آنکور و کاهش شناسایی انتسه اکسیدانی پیوسته در تغذیه تغذیه شده با پوست آنکور و کاهش شناسایی انتسه اکسیدانی نیز مثبت است. (P<0.05)

نتایج مطالعه حاضر نشان داد که مصرف روزانه گری کم کشمش سیب‌سالار، فروسر و انتسه اکسیدانی بیماران می‌باشد. اگر این مصرف روزانه با سلول‌های الگویی که بر روی آنکور و کاهش شناسایی انتسه اکسیدانی پیوسته در تغذیه تغذیه شده با پوست آنکور و کاهش شناسایی انتسه اکسیدانی نیز مثبت است. (P<0.05)
انکور نرسیده (آبزورگره) مشاهده شده است. این اثر، نقاشی تازه‌ای در مطالعه حاضر با یافته‌های پژوهشی بروز مطالعاتی می‌باشد.

تغییر معنی‌داری در سطوح لیپیدهای سرم بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد. میتوان انتظار مطالعه حاضر کانوس و همکاران نیز با مصرف 25 گرم کلمش بیانه به مدت 24 هفته تغییر معنی‌داری در پرونده لیپیدهای بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد.

در مطالعه حاضر با مصرف کلمش سیاه داندار تغییر معنی‌داری در سطوح لیپیدهای سرم بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد. همسو با تأثیر مطالعه حاضر کانوس و همکاران نیز با مصرف 25 گرم کلمش بیانه به مدت 24 هفته تغییر معنی‌داری در پرونده لیپیدهای بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد.

در مطالعه حاضر با مصرف کلمش سیاه داندار تغییر معنی‌داری در سطوح لیپیدهای سرم بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد. همسو با تأثیر مطالعه حاضر کانوس و همکاران نیز با مصرف 25 گرم کلمش بیانه به مدت 24 هفته تغییر معنی‌داری در پرونده لیپیدهای بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد.

در مطالعه حاضر با مصرف کلمش سیاه داندار تغییر معنی‌داری در سطوح لیپیدهای سرم بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد. همسو با تأثیر مطالعه حاضر کانوس و همکاران نیز با مصرف 25 گرم کلمش بیانه به مدت 24 هفته تغییر معنی‌داری در پرونده لیپیدهای بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد.

در مطالعه حاضر با مصرف کلمش سیاه داندار تغییر معنی‌داری در سطوح لیپیدهای سرم بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد. همسو با تأثیر مطالعه حاضر کانوس و همکاران نیز با مصرف 25 گرم کلمش بیانه به مدت 24 هفته تغییر معنی‌داری در پرونده لیپیدهای بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد.

در مطالعه حاضر با مصرف کلمش سیاه داندار تغییر معنی‌داری در سطوح لیپیدهای سرم بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد. همسو با تأثیر مطالعه حاضر کانوس و همکاران نیز با مصرف 25 گرم کلمش بیانه به مدت 24 هفته تغییر معنی‌داری در پرونده لیپیدهای بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد.

در مطالعه حاضر با مصرف کلمش سیاه داندار تغییر معنی‌داری در سطوح لیپیدهای سرم بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد. همسو با تأثیر مطالعه حاضر کانوس و همکاران نیز با مصرف 25 گرم کلمش بیانه به مدت 24 هفته تغییر معنی‌داری در پرونده لیپیدهای بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد.

در مطالعه حاضر با مصرف کلمش سیاه داندار تغییر معنی‌داری در سطوح لیپیدهای سرم بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد. همسو با تأثیر مطالعه حاضر کانوس و همکاران نیز با مصرف 25 گرم کلمش بیانه به مدت 24 هفته تغییر معنی‌داری در پرونده لیپیدهای بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد.

در مطالعه حاضر با مصرف کلمش سیاه داندار تغییر معنی‌داری در سطوح لیپیدهای سرم بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد. همسو با تأثیر مطالعه حاضر کانوس و همکاران نیز با مصرف 25 گرم کلمش بیانه به مدت 24 هفته تغییر معنی‌داری در پرونده لیپیدهای بیماران مبتلا به هایپرلپیدئیمی مشاهده نشد.

References

fiber in foods and food products: interlaboratory study. J
32. Sadasivam AM. Biochemical Methods. first ed. New
Delhi: New Age International (P) Limited; 1996.
33. Kukić J, Popović V, Petrović S, Mucaji P, Ćirić A, Stoj-
ković D, et al. Antioxidant and antimicrobial activity of
34. Rankin JW, Andreae MC, Oliver Chen CY, O’Keefe SF.
Effect of raisin consumption on oxidative stress and inflam-
35. O’Byrne DJ, Devaraj S, Grundy SM, Jialal I. Compari-
son of the antioxidant effects of Concord grape juice
flavonoids a-tocopherol on markers of oxidative stress
36. Leifert WR, Abyewardena MY. Cardioprotective actions of
37. Burns J, Gardner PT, O’Neill J, Crawford S, Morecroft I,
McPhail DB, et al. Relationship among antioxidant
activity, vasodilatory capacity, and phenolic content of
38. Wu X, Beecher GR, Holden JM, Haytowitz DB, Geb-
hardt SE, Prior RL. Lipophilic and hydrophilic antioxi-
dant capacities of common foods in the United States.
39. Shafiee M, Carbonneau MA, Urban N, Descomps B,
Leger CL. Grape and grape seed extract capacities at
protecting LDL against oxidation generated by Cu 2+,
AAPH or SIN-1 and at decreasing superoxide THP-1
cell production. A comparison to other extracts or com-
40. Sullivan ME, Keoghane SR, Miller MA. Vascular risk
factors and erectile dysfunction. BJU Int 2001; 87: 838-
45.
41. Dohadwala MM, Vita JA. Grapes and cardiovascular
disease. The Journal of nutrition 2009; 139: 1788S-93S.
42. Landraut N, Poucberet P, Ravel P, Gasc F, Cros G, Tei-
sedre PL. Antioxidant capacities and phenolics levels of
French wines from different varieties and vintages. J
43. Aronson DC, Onkenhout W, Raben AM, Oudenhoven
LF, Brommer EJP, van Bockel JH. Impaired homo-
cysteine metabolism: a risk factor in young adults with
atherosclerotic arterial occlusive disease of the leg. Br J
44. Barash E, Benderly M, Graff E, Behar S, Reicher-Reiss
H, Caspi A, et al. Plasma fibrinogen levels and their
 correlates in 6457 coronary heart disease patients. The
 Bezafibrate Infarction Prevention (BIP) Study. J Clin
45. Mansfield MW, Heywood DM, Grant PJ. Circulating
levels of factor VII, fibrinogen, and von Willebrand fac-
tor and features of insulin resistance in first-degree rel-
atives of patients with NIDDM. Circulation 1996; 94:
2171-6.
46. Keevil JG, Osman HE, Reed JD, Folts JD. Grape juice,
but not orange juice or grapefruit juice, inhibits human
47. Home BD, Mullestein JB, Gupta NC, Sukavaneshvar S,
May HT, Lappé DL, et al. Randomized Double-Blind
Parallel-Arm Placebo-Controlled 3-Month Trial of Pur-
ple Grape Juice for the Inhibition of Platelet Aggrega-
tion inApparently Healthy People. Circulation 2011;
124: A10529-A. Available from: URL: http://circ.aha-
journals.org/content/124 Suppl_21/A10529.
48. Shannanayagam D, Warner TF, Krueger CG, Reed
JD, Folts JD. Concord grape juice attenuates platelet
aggregation, serum cholesterol and development of ath-
eroma in hypercholesterolemic rabbits. Atherosclerosis
2007; 190: 135-42.
49. Olas B, Wachowicz B, Tomczak A, Erler J, Stochmal A,
Oleszek W. Comparative anti-platelet and antioxidant
properties of polyphenol-rich extracts from: berries of
Aronia melanocarpa, seeds of grape and bark of Yucca
50. Torres-Uruttia C, Guzman L, Schmeda-Hirschmann G,
Moore-Carrasco R, Alarcon M, Astudillo L, et al. Anti-
platelet, anticoagulant, and fibrinolytic activity in vitro
of extracts from selected fruits and vegetables. Blood
51. Havsteen B. Flavonoids, a class of natural products of
high pharmacological potency. Biochemical Pharmacol
52. Sivaprakasapillai I, Edisbury I, Randolf J, Stei-
berg F, Kappagoda T. Effect of grape seed extract on
blood pressure in subjects with the metabolic syndrome.
Metabolism 2009; 58: 1743-6.
53. Kaseb F, Biregani AN. Effects of Olive Oil and Grape
Seed Oil on Lipid Profile and Blood Pressure in Patients
with Hyperlipidemia: A Randomized Clinical Trial. Fo-
54. Zibaeenezhad MJ, Mohammadi E, Babaie Beigi MA,
Mirzamohammadi F, Salehi O. The effects of unripe
grape juice on lipid profile improvement. Cholesterol
2012; 2012: 890262.
55. Khadem-Ansari MH, Rasi M, Ramezani F. Effects of
red grape juice consumption on high density lipoprotein-
cholesterol, apolipoprotein A1, apolipoprotein B and
homocysteine in healthy human volunteers. Open Bio-
Effect of Raisin Consumption on Some Coagulation Factors and Total Serum Antioxidant Capacity in Hyperlipidemic Patients: A Randomized Clinical Controlled Trial

Shishehbor F1, Joola P2, Aasad Masjedi N3, Sadeghinia A4, Saki Malehi A5, Jalali Far MA6, Dehyouri A7

1Nutrition and Metabolic Disease Research Center, School of Para-Medicine, & 2Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 3Faculty of Paramedical, & 4Faculty Member of Cardiology Department, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, 5Health Research Institute, Thalassemia and Hemoglobinopathy Research, & 6Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, & 7Expert of Medical Laboratory, Shafa Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, I. R. Iran
e-mail: p.joola@yahoo.com

Received: 09/01/2017 Accepted: 12/03/2017

Abstract

Introduction: High circulating levels of hemostatic factors are associated with increased CVD risk. Raisins contain polyphenolic compounds which can reduce risk factors for cardiovascular disease. In this study the effect of black raisin consumption on some coagulation factors, lipid profile and serum Total Antioxidant Capacity (TAC) in hyperlipidemic patients was evaluated.

Materials and Methods: In this randomized clinical trial, 40 hyperlipidemic patients (25 women, 13 men), mean age of 41.05±10.4 years, participated and were randomly divided into two groups. The intervention group consumed 90 gr black raisins for 5 weeks while the control group received no intervention. Plasma levels of fibrinogen and factor VII, lipid profile and TAC were determined at baseline and after 5 weeks of intervention. Physical activity and 24-hour recall were also evaluated questionnaire at baseline and at end of the study. Data were analyzed using independent T-test and paired T-test and significant was set at P values<0.05.

Results: Physical activity and energy intake did not differ significantly between the two groups. After 5 weeks of daily intakes of raisin, TAC was significantly increased in the raisin group compared to the control group (P=0.001). Although levels of lipid profile, factor VII and fibrinogen were decreased in the raisin group, they were not significant compared with control group (P=0.459, P=0.633). Mean serum total cholesterol (P=0.018) and LDL-C (P=0.01) was significantly reduced, compared to baseline, but no significant difference was observed between the two groups (P=0.797, P=0.855).

Conclusion: These results indicate that consumption of black raisin which is rich in polyphenolic compounds has beneficial effects on serum antioxidant capacity in patients with hyperlipidemia.

Keywords: Black raisin, Fibrinogen, Factor VII, Antioxidant capacity, Lipid profile