ترسیم اثرات ضد دیابتی و ضد نوروزی عصاره هیدروالکلی گل زنگلولهای (Onosma dichroanthum) در مدل تجربی دیابت در موس سوري به وسیله استرپتووزوسین

مقدمه: بیماری دیابت اخلاقی متابولیستیک است که در آن ترشح انسولین یا حساسیت سلول‌های بدن به انسولین دچار اختلال می‌شود. Onosma dichroanthum گونه‌ای از گل‌های زیان در طب سنتی است که به دلیل خواص ضد میکروبی، ضد التهابی و انتی‌اکسیدانی مورد استفاده قرار می‌گیرد. این مطالعه با هدف بررسی خواص ضد دیابتی و ضد نوروزی و اکسیدانی Onosma dichroanthum امترس، در مدل تجربی دیابت در موس سوري طراحی شد. مواد و روش‌ها: پس از جمع‌آوری گیاهی Onosma dichroanthum، عصاره هیدروالکلی از این گیاه در فزیون یوپوکیکلورید، ده‌گرمی نمونه به دست آمد. نمونه‌های نارنجی، سرم و مصرف مواد غذایی به معنای مثبت استفاده شد. پس از پایان دوره دیابتی در موس سوري مورد بررسی قرار گرفتند و نتایج به دست آمد. در این مطالعه مدل دیابت انسولینی در موس سوري طراحی شد و اثرات ضد دیابتی و ضد نوروزی این گیاه بر روی آن در مدل بررسی شد.

واژگان کلیدی: Onosma dichroanthum، دیابت، نوروزی، اکسیدان، استرپتووزوسین.

مقدمه

در دیابت نوع دوم مشخصه شده است که عوامل زنگی‌نیک، چاقی و کاهش مصرف هوا می‌تواند بیمار را دچار دیابت شود. نوروزی شایع‌ترین عارضه دیابت دیابت دیابت دیابت است. در ۵۰ درصد از بیماران بالای ۶۵ سال بیشتر بیماران دیابت دیابت دیابت دیابت است. این عارضه در دیابت نوع یک
مواد و روش‌ها

متقسیم از شرکت مهتاب شیمی، استرپیژنوسین، آگار، اسید بوریک، پافورمیت و توتوربیوراک کمکی از شرکت سیگما، آلان هچه شده Aέ، رکتیله، مگل کلرک، اسید ال‌دی‌تی‌آ، و مواد اورها در DMSO و کلوئیدی‌گسی از شرکت Merck، وارانتو ۹۶ از شرکت DMSO و Glibazin، به خصوص در دوزهای بالا توجه به ترکیبات ترکیبات گیاهی به تنها، یا به همراه داروهای شیمیایی مورد توجه قرار گرفته و در برخی موارد نتایج درخشانی داشته است.

یازده گیاهی که گل گل‌داران نامیده Onosma جنس ۱۰۵ گونه‌ی شناخته شده در آسیا است. ۱۲۱ این گیاه دارای آگاتین، شیکوئین، فالونوراک، اسید فرولیک و اسید واپولیک است که ممکن است خواص ضد التهابی، ایتام زخم و ضد بستگی به گیاه گیاه داشته، یک بروکسی نشان داد که این ترکیبات دارای اثربخشی قوی ضد التهابی و ضد درد هستند. اما برخی از داروهای “NSAIDS” اثر مخرب بر دستگاه کورش وارد دارند. ۱۲۱ هیچ‌یک از گونه‌های مختلف این جنس خواص آنتی‌اکسیدانی و ضد سرطانی مشاهده شده است ۱۲۱-۲۰.

گونه‌ی است که در بخش مناطق O. dichroanthum معتدل و کوهستان می‌روید و در ایران نیز مشاهده و گزارش‌ها از فعالیت در این آزمایش گزارش شده O. dichroanthum است. ۱۰۰ عصاره‌ی استروها یا یک برخی به منجر به این بودندکلیه آزاد در باعث خونی و

کنار گذاشته است. ۱۰۰-۲۳

با توجه به اطلاعاتی که در خصوص خواص ضد التهابی و آنتی‌اکسیدانی گیاه و همچنین اثرات Onosma Sorkopانکدی رادیکال‌های آزاد گیاه وجود دارد. که از خصوصیات برای داروهای گیاهی ضد دیابت و تورمبیوی پایداری وی در نیاز وفور این گونه گیاه در بخش مناطق کوهستانی ایران. این اثربخشی به یک بروکسی اثرات ضد دیابت و ضد تورمبیوی و ضد استرس اسکیدینی اعمالی هیدروکسیل این گونه گیاهی و مقایسه با داروهای متقسیم از دیگر مدل تجربیهای دیابت در موسسی طراحی شد.


v - Hot plate
vi - RCF (relative centrifugal force)

i - Solfonylurea
ii - Biguanide
iii - Glitazones
iv - Nonsteroidal Anti-Inflammatory drugs

دوری نوزدهم، شماره ۳، مرداد – شهریور ۱۳۹۴
ملیجی عضو درون‌پزشک و متایلیسم ایران

۱۶۲
لازم که توضیح است، دوری عصاره بر پایه مطالعات پیشین، و L50، یک دوز متوسط بود و دوز متقربین نیز دوز درمانی متوسط در مدل حیوانی بر طبق مطالعات پیشین تعیین شد. در پایان دوره درمانی، قند موثری کلی گرده‌های درمانی پس از خون‌گیری از وید دم توسط دستگاه گلوکومتر و وزن آنها توسط ترازو و توریپاتی آنها توسط آزمون صفحه دانه توسط دستگاه انداراتگری شد. برای بررسی شاخص‌های اکسیداتیو استرس، کلوتاتون و مالوانیل دی اسیدی (MDA) بافتی مورد قرار گرفتند. برای این منظور حیوانات پس از آزمایشات قند خون به وسیله گیپسین کنتراست شدند و کبد و مغز حیوانات خارج شد. بررسی شاخص‌های اکسیداتیو استرس در کل بافت کبد و مغز انجام شد.

اندازه‌گیری موثری کلوتاتون
برای ان منظور، بافت‌های کبدی ابتا با پنس و نقیچه جدا و 1/10 کرم از آن با ترازو وزن و به لوله هموژنایز انتقال داده شد. سپس 1 میلیلیتر EDTA به آن اضافه شد و چند بار عمل هموژن کردن با پیستون انجام دش تا مخلوطی یکپارچه حاصل گردید. سپس مختویات لوله هموژنایزیر به لوله سانترپریفون انتقال یافته. همه‌پن 0/5 میلیلیتر دوباره به لوله هموژنایزیت اضافه شد و پس EDTA میلیلیتر دوباره به لوله هموژنایزیت اضافه شد. از آنها داند، محیط آناتیوم سانترپریفون (در شرایط 4 درجه) منتقل شد. در مخلوط بود با مخلوط رویی سانترپریفون. 1/5 میلیلیتر 0/1 جهت رضوی TCA پروتئین‌ها اضافه شد. سپس از سانترپریفون مجدداً در دور 200 به مدت 15 دقیقه، 1 میلیلیتر از مخلوط رویی به لوله ازرایش منتقل و آن به 2/5 میلیلیتر (ترسیس 4 مولار، (Ellman's reagent) اضافه شد. سپس لوله به خوبی تکان داده شد تا رنگ زرد یکپارچه در لوله حاصل شد. در نهایت، جد مخلوط حاصل در 1/10 تاننومتر خون‌دید و با مقایسه با منحنی استاندارد فلزات کلوتاتون به دست آمد.
تعیین مقدار فنون (کالیک اسید)
نیم میلیلیتر از محلول حاوی عصاره مورد نظر با 2/5 میلیلیتر از محلول سوکالسی مخلوط شد و بعد از گذشتن 5 دقیقه، 2 میلیلیتر از محلول 75 گرم در لیتر سدیم کربنات اضافه شد. بعد از گذشتن 12 دقیقه چرب تزریق توسط دستگاه اسیکتروفوتومتری در طول موج 760 نانومتر خوانده شد. پس از انجام آزمون‌های آزمایشگاهی، تحلیل آماری با کمک نرم‌افزار SPSS برای این منظور آزمون‌های آماری آنالیز یک طرفه و پست تکی با حد معنی‌داری 0/05 پذیرش شد.

یافته‌ها

عصاره‌های هیدرولیک‌الکلی اندام‌های مورف‌ویژنی (Onosma dichroanthum) با اثر کاهش محتوای خون در مقایسه با متفورمن (50 میلیگرم/کیلوگرم) شد و تأثیر عصاره اندام زیرزمینی قدری بیشتر از اندام هاوی بود؛ البته اثر هیپرآتی این عصاره بین متفورمن و عصاره‌ها وجود نداشت (نمودار ۱).

نتایج قند خون

نمودار ۱- مقایسه میزان کلوزک خون بر حسب (میلیگرم/صد میلیلیتر) بین همه کروه‌ها با گروه پس از دوره STZ درمانی.

اندام هاوی باعث افزایش معنی‌دار میزان هپاتیت در وزن‌شک که البته اثر هیپرآتی بین عصاره و متفورمن مشاهده نشد (نمودار ۲).
نمودار ۲ - مقایسه میزان وزن موش بر حسب گرم بین گروه‌های دریافت کننده عصاره با گروه دریافت کننده متقؤمین

اثربخشی مایعی از حلال دیابتی (STZ) (کنترل دیابتی) عصاره ۱ عصاره هیدروالکلی اندام هواپی، عصاره ۲ عصاره هیدروالکلی اندام زیرزمینی، شاهد مثبت: متقؤمین ۵۰ میلی گرم کیلوگرم.

و عصاره‌ی اندام‌های هواپی و زیرزمینی کاملاً معنی‌دار است، آنها به‌طور محاصره حرارتی توسط دستگاههای هرات پیش از اندام‌های دیابتی عصاره‌ای بین گروه متقؤمین و عصاره‌ای وجود نداشت در اینجا نیز اثر عصاره هواپی موثرتر بود (نمودار ۳).

همچنین با اندام‌های مداوم قدت خون موش‌ها پاسخ آنها به محور درد حرارتی توسعه دستگاههای هرات دارد. در موش‌های دیابتی همان‌طور که انتظار می‌رود، هایپوآلژیا (وقت زمانی در پاسخ به محور حرارتی) مشاهده شد و در گروه‌های دریافت کننده متقؤمین.

نمونه‌گیری از ۲۱ آزمایشگاه میزان زمان وقفه (از دوره به دوره) در گروه‌های دیابتی

اثربخشی مایعی از حلال دیابتی (STZ) (کنترل دیابتی) عصاره ۱ عصاره هیدروالکلی اندام هواپی، عصاره ۲ عصاره هیدروالکلی اندام زیرزمینی، شاهد مثبت: متقؤمین ۵۰ میلی گرم کیلوگرم.

اندام هواپی بیشتر از اندام زیرزمینی بود، اگرچه ترکیب عصاره و متقؤمین باعث افزایش تاکید در گلوتاتیون کبدی شد، اما این اثر همان‌ها معنی‌دار نبود (نمودار ۴).

در مغزی مشاهده شد و متقؤمین و عصاره‌های هیدروالکلی اندام هواپی و زیرزمینی باعث افزایش معنی‌دار در میزان گلوتاتیون کبدی. در پایانهای دیابتی و معنی‌دار مشاهده شد و متقؤمین

۱۶۵ گلوتاتیون

Onosma dichroanthum
نمودار ۲- مقایسه میزان کلوتاتیون کبد (میکرومول/گرم) در گروه‌های مورد مطالعه.

شده و تاثیر عصاره اندام زیرزمینی بیشتر از اندام هویایی بود. اکثریت و تاثیر عصاره و متفرقه‌می باعث افزایش تاثیر بر MDA میزان شد. اما این اثر هم مکرری می‌داد مورد نیو (نمودار (۵)).

نمودار ۵- مقایسه میزان مالونیل دی-آلدنید کبد در گروه‌های مورد مطالعه.

محتوای تركیبات قلیایی به روش فولین سیرو کالتوئی در (۰/۵ میلی‌گرم کالکیا اسد در هر گرم عصاره و میزان محتوای تام فلز موجود در قسمت ریشه کیا برای ۴۸ میلی‌گرم کالکیا اسد در هر گرم عصاره بود.

i- Folin–ciocalteu

ii- Quercetin
Onosma dichroanthum

 Investigators of the remarkable effects of Onosma dichroanthum. In contrast to DMSO, the compound has been shown to significantly inhibit AMP-activated protein kinase (AMPK) activity. Furthermore, it has been shown to be effective in the treatment of various diseases, including cancer. The compound also has potential for use in the treatment of diabetes and obesity.

<table>
<thead>
<tr>
<th>DMSO</th>
<th>Onosma dichroanthum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Results indicate that Onosma dichroanthum has a significant effect on AMPK activity, making it a potential candidate for the treatment of metabolic disorders.
References


5. Alizadeh M. Harison basis of medical sciences, endocrinology, Persian translate; Esharat Pub co 2002;1:165-220. [Farsi]


Original Article

Effects of the Anti-diabetic and Anti-neuropathy Effects of Onosma Dichroanthum in an Experimental Model of Diabetes by Streptozocin in Mice

Naderi M1, Dehpour AA1, Yaghubi Beklar S2, Fathi H3, Ataee R4

1Biology Department, Islamic Azad University Gaemshahr, 2Student Committee, Pharmacy School, & 3Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Hemoglobinopathy Institute, & 4Thalassemia Research Center, Mazandaran University of Medical Sciences, Sari, I.R. Iran, e-mail: raminataee1349@gmail.com

Received: 31/08/2016 Accepted: 15/07/2017

Abstract
Introduction: Diabetes is a metabolic disease with hyperglycemia, decrease in insulin secretion or de-sensitization of peripheral cells to insulin. Onosma is a species of Boraginaceae which although it is used in traditional medicine for its anti-oxidant, anti-inflammatory and antibiotic properties, data on its anti-diabetic effects are limited. This research has been designed to assess its' anti-diabetic, anti-neuropathy and anti-oxidative stress effects in an in-vivo model of diabetes.

Materials and Methods: Hydroalcoholic extract was prepared from over-ground organs, (shoots and leaves) and underground organs (roots), and administered by gavage (50 mg/kg) for 3 weeks to mice in a streptozocin induced diabetic model. After the treatment period, blood glucose, weight and neuropathy were determined and for positive control, metformin (50 mg/kg) was used. After removing the brain and liver of mice and homogenization of tissues, the MDA and Glutathione contents of the tissues have been assayed by a colorimetric method.

Results: Results of this research show that hydroalcoholic extract of Onosma d. has anti-diabetic properties which have beneficial effects for some parameters such as hypoglycemina and reducing MDA, the effect of underground organs as roots extracts were better. However for increasing weight, diminishing neuropathy and increasing GSH contents, the effects of over-ground organs as leaves and shoots extracts were more significant. Conclusion: Results of this research indicate the anti-diabetic and anti-neuropathy properties of Onosma dichroanthum as a herbal medicine, related to its anti-oxidant abilities and limited side effects, can hence be used for treatment with other anti-diabetic drugs.

Keywords: Onosma dichroanthum, Diabetes, Neuropathy, Oxidative stress, GSH, MDA