بررسی اثرات ضد دیابتی و ضد نورپاتی عصاره‌های گل زنگوله‌ای (Onosma dichroanthum) در مدل تجویز دیابت در موش سوری به وسیله استرپتوژوسین

مقدمه

پیآمدهای بافت‌پاتیمیکی است که در آن ترشح انسولین یا حساسیت سلول‌های بدن به انسولین دچار اختلال می‌شود. Onosma dichroanthum یک گونه از جمله گیاهان تندیسی است که به عنوان ماده خاصی از این گیاه در انسولین و دیابت یافت شده است. Onosma dichroanthum یک گیاه است که به عنوان ماده فعالی در مدل می‌باشد. در این مطالعه، مدل دیابت مورد استفاده قرار گرفت. در این مطالعه، مدل دیابت مورد استفاده قرار گرفت. در این مطالعه، مدل دیابت مورد استفاده قرار گرفت. در این مطالعه، مدل دیابت مورد استفاده قرار گرفت.
مواد و روش‌ها
منتقهرین از شرکت مهبان شیمی، استرپتوزوسین، آکار، اسد بوریک، بافتریس و تیوبراینتوریک اسید از شرکت
سیگنکا، آلمان به دست آلک طبقه،
مجر و تاتنال.
و از شرکت DMSO,
و در شرکت نور دیزی راژی ایران خریداری گردید. نرمال
سالین‌های درمان از داروسازی ثامن (ایران)، دستگاه
اندازه‌گیری تند خون (آلمان) و صفحه داغ از
از شرکت رسال اپلته تهیه شد.
در (Onosma dichroanthum)
ارتباطات شناسه‌کاری سازی جمع‌آوری شد و نام جنس و
گونه آن توسط فلور ایرانیکا و دکتر اسلامی، متخصص
سیستماتیک، تایید شد.
روش عصاره‌برداری
برک و ریشه گیاه پس از جمع آوری و آسیاب کردن، به
روش پرولیپاسیون عصاره‌برداری شد. به این ترتیب که
گرم پودر آسیاب شده با یک آب مخلوط شد و به مدت
یک ساعت در فلزس آب کرم بی‌بسته ۱۰ درجه سانتی‌گراد
قرار گرفت. سپس توسط سانتریپریوریز با دور
۱۶۱۹ بخش جامد از بخش ماک جذا شد و ان تاوان ۶۰ درصد
به منظور رسوب پلی ساکارید اضافه شد. سپس محلول ماک
انالتان تحت خلاء فیبرل شد و از طریق کاغذ صافی به حذف
پلی ساکارید و خال. تحت فناور کاهش‌یافته اقدام شد. پس
از تهیه عصاره صنعتی الکلی انالتان ۶۰ درصد توسط
دستگاه پرولاکتر، این عصاره توسط DMSO در آب مقطر به صورت سوسپنژیون مارپیچ کرد و به
صورت مایع مصرف گردید.

مطالعه‌های جدول
لازم بود توضیح این است مراحل روش‌های کاربردی
جدول‌های آزمایشگاهی بر اساس پرونکی‌های مصرف کرده
در جدول مورد مطالعه قرار گرفته شدهند.
در درجه حرارت ۲۳۵ درجه سانتی‌گراد با سیکل روش‌های
می‌توان به عنوان خیلی داروهای مختلف در درمان
دیابت از جمله انسولین، سولفونیلاور، بی‌گوگاندا،
گینازونی، به‌خصوص در دوره‌های بالا توجه به ترکیبات
ترکیبات گیاهی به نهادی و یا به همراه داروهای شیمیایی
مورد توجه قرار گرفته و در برخی موارد نتایج درخشانی
باشد.

- سولفونیلاور
- بی‌گوگاندا
- گیتازونز
- Nonsteroidal Anti-Inflammatory drugs

v - Hot plate
vi- RCF (relative centrifugal force)
آزم و پیشین، و لیزری L50-12، مقداری از دمای دستگاه گلوکومت و وزن آنها توسط ترانزیت و نورپندا آنها توسط آزمون سطح دگرگونی اندازه گیری شد. برای این منظور تغییرات پس از آزمایشات قنات خون به سبب گیوتین که داده شد و مغز حیوانات خارج شد. بررسی شاخص‌های اکسیداسیون استرس در کل بافت کبد و مغز انجام شد.

اندازه‌گیری میزان کلروتاتیون
برای این منظور، بافت‌های بینی از پنیر و قیچی جدا و 10/12 گرم از آن بر ترازو ون و به یک‌لیتر میلی‌لیتری EDTA به آن اضافه شد و چندبار عمل هم‌زنی کرد. سپس 1‌لیتر EDTA مخلوطی یک‌نواحی حاصل گردید. سپس محتوای لوله هم‌زنی‌بری به لوله سانتریفیوژ اندازه‌گیری شد. میلی‌لیتری EDTA دوباره به لوله هم‌زنی‌بری اضافه شد و سپس از تکان دادن، محتوای آن به لوله سانتریفیوژ (در شرایط ظرفی) منتقل شد. در مثلث بود، به مرحله روبی سانتریفیوژ، 1/5 میلی‌لیتر 4، 6 جهت رسب TCA و پروتئین‌ها اضافه شد. سپس از سانتریفتیوژ مجدداً در دور 2500 به مدت 15 دقیقه، 1 میلی‌لیتر از مخلوط روبی به لوله آزمایش منتقل و آن به 2/5 میلی‌لیتر باقر (پرس 4 مولار، (Ellman’s reagent اضافه شد. سپس لوله به خوبی تکان داده شد تا رنگ زرد یک‌نواحی در لوله حاصل شد. در نهایت، جب محلول حاصل در 4120 نانومتر خوانه شد و با مقایسه با منحنی استاندارد غلظت کلروتاتیون به دست آمد. نتایج و موارد

یکی از پاسخ‌هایی که در این مطالعه رصد شد، آن‌ها توسط ترانزیت و نورپندا آنها توسط آزمون سطح دگرگونی اندازه گیری شد. برای این منظور، بافت‌های بینی از پنیر و قیچی جدا و 10/12 گرم از آن بر ترازو ون و به یک‌لیتر میلی‌لیتری EDTA به آن اضافه شد و چندبار عمل هم‌زنی کرد. سپس 1‌لیتر EDTA مخلوطی یک‌نواحی حاصل گردید. سپس محتوای لوله هم‌زنی‌بری به لوله سانتریفیوژ اندازه‌گیری شد. میلی‌لیتری EDTA دوباره به لوله هم‌زنی‌بری اضافه شد و سپس از تکان دادن، محتوای آن به لوله سانتریفیوژ (در شرایط ظرفی) منتقل شد. در مثلث بود، به مرحله روبی سانتریفیوژ، 1/5 میلی‌لیتر 4، 6 جهت رسب TCA و پروتئین‌ها اضافه شد. سپس از سانتریفتیوژ مجدداً در دور 2500 به مدت 15 دقیقه، 1 میلی‌لیتر از مخلوط روبی به لوله آزمایش منتقل و آن به 2/5 میلی‌لیتر باقر (پرس 4 مولار، (Ellman’s reagent اضافه شد. سپس لوله به خوبی تکان داده شد تا رنگ زرد یک‌نواحی در لوله حاصل شد. در نهایت، جب محلول حاصل در 4120 نانومتر خوانه شد و با مقایسه با منحنی استاندارد غلظت کلروتاتیون به دست آمد.
تعیین مقدار فنون (کالیک اسید)
نیم میلیلیتر از محلول حاوی عصاره مورد نظر با 2/5 میلیلیتر از محصول قوی - سیکاتیو مخلوط و بعد از گذشتن 5 دقیقه، 2 میلیلیتر از محلول 75 گرم در لیتر سیدن کریت اضافه شد. بعد از گذشتن 12 دقیقه تجزیه توسط دستگاه اسیکتروفوتومتری و در طول موج 760 نانومتر خواهند شد.

پس از انجام آزمون‌های آزمایشگاهی، تحلیل آماری با کمک نرم‌افزار SPSS انجام شد. برای این منظور، آزمون‌های آماری آنالیز یک طرفه و پست تکی با حد معنی‌داری 5/0 پویاگردید.

یافته‌ها
عصاره هیدرولولکی اندام هموایی و زیرزمینی Onosma dichroanthum باعث کاهش محتوای قد غون در مقایسه با مترنومین (50 میلی‌گرم/کیلوگرم) شد و تاثیر عصاره اندام زیرزمینی قادر بیشتر از اندام هموایی بود؛ البته اثر همافازی معنی‌داری بین مترنومین و عصاره وجود نداشت (نمودار 1).

نتایج فنون خون
نمودار 1- مقایسه میزان کلوزیک خون بر حسب (میلی‌گرم/صد میلی‌لیتر) بین همه کروه‌ها با کروه PS از دوره STZ درمانی.

در اکتیف میتر برای نسبت به کروه شاهد دیابتی (STZ) عصاره 1: عصاره هیدروالکی اندام هموایی عصاره 2: عصاره هیدروالکی اندام زیرزمینی شاهد مفتی: مترنومین 50 میلی‌گرم/کیلوگرم.

پس از الگو دیابتی و وزن موش‌ها نسبت به کروه شاهد کاهش معنی‌داری داشت و تجویز مترنومین باعث افزایش معنی‌دار وزن شد. تجویز به تنها عصاره هیدروالکی
نمودار ۲- مقایسه میزان وزن موش بر حسب گرم بین گروه‌های دریافت کننده عصاره با گروه دریافت کننده متفاوت‌می‌باشد.

* اختلاف معنی‌دار (P<0.05) میانگین با گروه STZ (kontrol دیابیتی) عصاره ۱ عصاره هیدرولاکلی اندام مواری. عصاره ۲ عصاره هیدرولاکلی اندام زیرزمینی. شاهد مثبت: متفاوت‌می‌باشد ۵۰ میلی گرم کیلوگرم.

و عصاره‌های اندام‌های هواپیم و زیرزمینی، کامی محتوی‌دار هایپوآلژیزا مشاهده شد که قابل مقایسه با گروه متفاوت‌می‌باشد. بود اثر منفی‌زا بین گروه متفاوت‌می‌باشد و عصاره‌ها و جوید ناشت در اینجا نیز اثر عصاره هواپیم موثرتر بود (نمودار ۲).

نمودار ۳- مقایسه میزان موروباتی (هایپوآلژیزا) (زمان وقفه) در گروه‌های درمانی.

* اختلاف معنی‌دار (P<0.05).

عصاره ۱ عصاره هیدرولاکلی اندام مواری. عصاره ۲ عصاره هیدرولاکلی اندام زیرزمینی. شاهد مثبت: متفاوت‌می‌باشد ۵۰ میلی گرم کیلوگرم.

اندام هواپیم بیشتر از اندام زیرزمینی بود. اگرچه ترکیب عصاره و متفاوت‌می‌باشد افزایش تأثیر در گروه‌های کبیدی عصاره‌های هیدرولاکلی اندام مواری و زیرزمینی باعث افزایش معنی‌دار در میزان گلوتاتیون شد. که تاثیر عصاره در موش‌های دیابیتی کامی محتوی‌دار است. اگرچه ترکیب عصاره و متفاوت‌می‌باشد افزایش تأثیر در گروه‌های کبیدی عصاره‌های هیدرولاکلی اندام مواری و زیرزمینی باعث افزایش معنی‌دار در میزان گلوتاتیون شد. که تاثیر عصاره
نمودار 2- مقایسه میزان گلوتاتیون کبد (میکرومول/قرم) در گروه‌های مورد مطالعه.

شبده و تأثیر عصاره اندام زیرزیستی بیشتر از اندام هواپی بود. اگرچه ترکیب عصاره و متفرقه باعث افزایش تأثیر بر MDA بود، اما این اثر هم افزایی معنی‌دار نبود (نمودار 5).

نمودار 5- مقایسه میزان مالونیل دی آلدنید کبد در گروه‌های مورد مطالعه.

محتوای تركیبات قلی به روش فولین سیرو کالیکو در 65 میلی گرم کالیک اسید در هر گرم عصاره و میزان محتوای تأم فلزی موجود در قسمت ریشه یک تایی برای 8 میلی گرم کالیک اسید در هر گرم عصاره بود.
گلولاتین، اثرات عصاره هیدروالکلی اندام‌های حاوی گیاه در کاهش قند خون و کاهش لیپید‌پلکسه باسین در افزایش
گلولاتین ناشی از کلبیا است بسیاری از مقالات به عنوان
عوامل آنتی‌اکسیدان و آنتی‌بایسیکس، باشند مهیج
می‌باشد. این دارو عصاره‌ای از گلولاتین در کاهش قند و
نروپاتی و افزایش گلولاتین به عنوان یکی از
شناخته‌شده‌ترین داروهای داخل سلولی علاوه بر
کاهش می‌باشد. کالیک اسید به دلیل عوامل دیگری از جمله
عناصر معنی‌دار سلولی و روی دست

در مطالعاتی که در سال 2002 توسط گروه اسپاکار
هیکلاراک در بررسی اثرات گلولاتین در گیاه کاغذی
جین‌تکنیکی مشابه با پنی‌جین‌های آن در خود
برای کاهش درد، رابطه این اثرات با گیاه‌های
ایرانی و اثرات آن در مشابه به گروه
Boraginaceae با گیاه‌های

از چندین گونه گیاهان خاک‌زدایی (Borago officinalis)
خصوص گل گاو زبان (Echin Amoenum) آن
بوده و عنوان آن در مطالعات استفاده شده است.
"" اثرات ضد

مطالعات گسترش در خصوص گیاه به عنوان
شورا (Onosma hispidum)

شناخته‌شده است. اثرات ضد

دبایی آن را در مطالعات شناخته داشت. در مطالعات

در هند توسط نیز اثرات ضد درمانی و همکارانش با روش گونه

انجام گرفت. اثرات ضد دیابتی مشاهده

شده. 17

بحث

مصرف ملولی داروی خطر اول خوراکی برای بیماران دیابتی
تیپ 2 از گروه بیگانه‌ها و منع او ایمنی آن از گیاه
که مصرف ملولی داروی خطر اول خوراکی برای بیماران
Gallicoffica

با گیاهی سمی از طریق مهار گلوکوناتوزیکی و همچنین
بهبود سیگما القای و عملکرد انستولین را در سلول‌ها می‌شود. اما
بهبود و افزایش انستولین در سلول‌ها می‌شود. اما
می‌تواند در این سلول‌ها نیست و شواید از افزایش
فعالیت

AMPK

در صورت مصرف ملولی و مصرف ملولی دارد. از عوارض
مصرف ملولی است. لیکن، ثبت کاهش معنی‌دار
مصرف داروی خطر اول خوراکی برای بیماران دیابتی
که مصرف ملولی داروی خطر اول خوراکی برای بیماران
Gallicoffica

واژه (Onosma hispidum)

این عصاره مهیج باشد. این

کاهش اندام‌های حاوی گیاه

هاگنیکاری استر، مصرف داروی خطر اول خوراکی برای بیماران دیابتی

Gallicoffica

واژه (Onosma hispidum)

این عصاره مهیج باشد. این

کاهش اندام‌های حاوی گیاه

ـAMP-activated protein kinase
مقایسه با مبتلایان بدون همچنین نتایج اندام هواپیما در سایر از شاخص‌ها بیشتر از اندام زیرزمینی بوده است. اگرچه نتایج همبستگی بین متغیران و عصاره چندان مشهود نبود.

لازم است توضیح است که پارامترهای قند، وزن، نوروزانی و استرس اکسیداتیو از آزمون‌های تجاری برابر بررسی دیابت در مطالعات اولیه است: در مطالعات بعدی می‌توان پارامترهای تکنیکی را نیز بررسی کرد.

بنابراین، بر اساس این مطالعه می‌توان اثرات آنتیدیابتیک و آنتی‌اکسیدانی استرس را برای گیاه *Echium dichroanthum* و وی بهبود کرد و آن را به عنوان یک داروی کمکی در درمان دیابت و حبیب پیشگیری از ترخیص‌های دیابتی مقایسه با داروی ضد دیابتی متغیران مستند است. اگرچه اثرات گیاه افزایشی می‌تواند با آن دیابت مبتنی باشد.

References

5. Alizadeh M. Harison basis of medical Sciences, endocrinology, Persian translate; Esharat Pub co 2002; 1: 165-220. [Farsi]

Effects of the Anti-diabetic and Anti-neuropathy Effects of Onosma Dichroanthum in an Experimental Model of Diabetes by Streptozocin in Mice

Naderi M¹, Dehpour AA¹, Yaghubi Beklar S², Fathi H³, Ataee R⁴

¹Biology Department, Islamic Azad University Gaemshahr, ²Student Committee, Pharmacy School, & ³Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Hemoglobinopathy Institute, & ⁴Thalassemia Research Center, Mazandaran University of Medical Sciences, Sari, I.R. Iran,
e-mail: raminataee1349@gmail.com

Received: 31/08/2016 Accepted: 15/07/2017

Abstract

Introduction: Diabetes is a metabolic disease with hyperglycemia, decrease in insulin secretion or de-sensitization of peripheral cells to insulin. Onosma is a species of Boraginaceae which although it is used in traditional medicine for its anti-oxidant, anti-inflammatory and antibiotic properties, data on its anti-diabetic effects are limited. This research has been designed to assess its’ anti-diabetic, anti-neuropathy and anti-oxidative stress effects in an in-vivo model of diabetes. Materials and Methods: Hydroalcoholic extract was prepared from over-ground organs, (shoots and leaves) and underground organs (roots), and administered by gavage (50 mg/kg) for 3 weeks to mice in a streptozocin induced diabetic model. After the treatment period, blood glucose, weight and neuropathy were determined and for positive control, metformin (50 mg/kg) was used. After removing the brain and liver of mice and homogenization of tissues, the MDA and Glutathione contents of the tissues have been assayed by a colorimetric method. Results: Results of this research show that hydroalcoholic extract of Onosma d. has anti-diabetic properties which have beneficial effects for some parameters such as hypoglycemia and reducing MDA, the effect of underground organs as roots extracts were better. However for increasing weight, diminishing neuropathy and increasing GSH contents, the effects of over-ground organs as leaves and shoots extracts were more significant. Conclusion: Results of this research indicate the anti-diabetic and anti-neuropathy properties of Onosma dichroanthum as a herbal medicine, related to its anti-oxidant abilities and limited side effects, can hence be used for treatment with other anti-diabetic drugs.

Keywords: Onosma dichroanthum, Diabetes, Neuropathy, Oxidative stress, GSH, MDA