بررسی اثرات ضد دیابتی و ضد نوروباتی عصاره‌های هیدروالکلی گل زنگوله‌ای (Onosma dichroanthum)

مقدمه
مقدمش: یکی از دیابت اخلاقی‌ترین است که در آن تشخیص انسولین یا حساسیت سلول‌های بدن به انسولین دچار اختلال می‌شود. Onosma dichroanthum یک گونه از گل‌زای زیان در طب سنتی است که به دلیل خواص ضد میکروبی، ضد التهابی و آنتی‌اکسیدانی مورد استفاده قرار می‌گیرد. این مطالعه به فرایند خواص ضد دیابتی و ضد نوروباتی این گیاه دیابتی، Onosma dichroanthum، با استرس در مدل تجربی دیابت در موش سوري به وسیله استرپتوزوسین، اثرات سه هفته برای مشاهده تغییرات دیده شد. پس از پایان دوره دیابت خاصیت‌های پزشکی و نوروباتی (به روش صفحه داغ) در موش‌ها و شاخه‌های اکسیدیاتوری Onosma dichroanthum به‌طور کلی در مورد خواص ضد مشاهده شد. در تحقیق مورد نظر، گیاه Onosma dichroanthum در شرایط دیابتی، به دارا بودن خواص آنتی‌اکسیدانی موتور نوروباتی‌های دیابتی، می‌تواند به عنوان یک رژیم دارویی مکمل مواد استفاده قرار گیرد.

واژگان کلیدی: Onosma dichroanthum، دیابت، نوروباتی، اکسیدیاتوری، متغیرهای دیابتی، گیاه هیدرو آلکلی

متقاضی
دیابت یا بیماری قد، اخلاقی‌ترین است که در آن تشخیص انسولین یا حساسیت سلول‌های بدن به انسولین دچار اختلال می‌شود. این بیماری توانایی تولید انسولین از بین مواد و یا سلول‌ها در برابر انسولین مقاوم شدیدان و بنابراین انسولین نمی‌تواند عملکرد طبیعی خود را انجام دهد.
مواضع و روش‌ها

متقارنی می‌باشد، سمتی، استریپتوژان، آگار، اسید بیوریک، فافنتریس و تیوباریتورین اسید از شرکت
سیگما، آلمان تهیه شده بوده‌اند. درکل محلول
گلولتانی، واناتول و DMSO از شرکت
Merk، واناتول ۹۶ از شرکت
۸۹٪، درصد از داروسازی ثانی (آرمان دستگاه
دانازگیری قند خون (آلمان) و صفحه داغ از
از شرکت رسم الکترونی تهیه شده.
در (Onosma dicroanthum) ارتفاعات تناسلی کیاساری جمع‌آوری شده و نام جنس و
گونه آن توسط فلور ایرانی و دکتر اسلامی، متخصص
سیستماتیکی، تایید شد.
روش روش‌ها می‌باشد.
برک و ریشه گیاه یک‌ساله از جمع آوری و أسئه کرد، به
روش پرکلزین آماری می‌باشد. به این ترتیب که
۵۰–۵۳ گرم پذیرفته شده با یک آمیخته دیگر به مدت
یک ساعت در فلور آپ کرم به مدت ۱۰ دقیقه ضریب گراف
قرار گرفت. سپس توسط سانترپوزیت با دور
۱۱۹۹، به شکل جامد از بخش مایع جدا شد و با این اندازه ۵۰–۵۳ درصد
به نورتی روسی پلی سلارکارد اضافه شد. سپس محلول مایع
اندازه‌گیری شده و به طرف راهیک‌سازی به حذف
پلی سلارکارد و حالی، تحت فشار کارهای پایه اقدام شد. پس
از تهیه عصاره‌های الکتریکی اندازه ۱۰–۵۰ درصد توسط
DMSO در آب مقرر به صورت سوپرسیون درآورد شد و به
صورت مایع مصرف گردید.

مطالعات حیاتی

لازم به توضیح است تمام روش‌های کاربردی
حیوانات آزمایشگاهی با استاند پرکلزین قبلاً به
اخلاق پزشکی و با کمک و کمک خلاق دانشگاه آزاد
اسلامی واحد قائم شهر (۱۲۱–۱۳۳۸) انجام
شد. موش‌های سوری ۹۱-۹۳ کرم از مجموعه پرورش حیوانات آزمایشگاهی
دانشگاه علم پزشکی مازندران تهیه شدند و در
درباره ۲۲-۶۳ درجه سانتی‌گراد با سیگل روش‌نامه-

v - Hot plate
vi- RCF (relative centrifugal force)

v - Nonsteroidal Anti-Inflammatory drugs

vi - Biguanide

vi - Glitazones
کروههای مورد مطالعه
گروه یک (شاهره دیایتی): محلول ۱۰ دسیفیل در DMSO
آب مقرتر رونده نیم میلیتر از طریق گاواز به مدت ۳ هفته تجویز شد.
گروه دوم (گروه شاهره مثبت): دوز ۵۰ میلی‌گرم/کیلوگرم داروی متقنی‌سازی‌هایی که صورت محلول در DMSO (۱۰ دسیفیل) به مدت سه هفته دریافت کردند.
گروه سوم: دوز ۵۰ میلی‌گرم/کیلوگرم عصاره گیاهی (قسمت هواپی) به صورت محلول در DMSO (۱۰ دسیفیل) به مدت سه هفته دریافت کردند.
گروه چهارم: دوز ۵۰ میلی‌گرم/کیلوگرم عصاره‌ای (ریشه) (به صورت محلول در DMSO (۱۰ دسیفیل) به مدت سه هفته دریافت کردند.
گروه پنجم: دوز ۵۰ میلی‌گرم/کیلوگرم عصاره گیاهی (قسمت هواپی) به صورت دو میلی‌لیتر دارویی متقوی‌سازی‌هایی به مدت سه هفته دریافت کردند.
گروه ششم: دوز ۵۰ میلی‌گرم/کیلوگرم عصاره‌ای (ریشه) به صورت دو میلی‌لیتر دارویی متقوی‌سازی‌هایی به مدت سه هفته دریافت کردند.
گروه هفتم: گروه کنترل که نرم‌ال سالیسین دریافت کردند.

*Glutathione and malondialdehyde
ii - Trichloroacetic acid
تعیین مقدار فنود (کالیک اسید)
نیم میلیلیتری از محلول حاوی عصاره مورد نظر با 2/5 میلیلیتر از عصاره نیکلاسین مخلوط شده و بعد از گنزی ۵ دقیقه، دو میلیلیتر از محلول ۵۰ گرم در لیتر سدیم کربنات اضافه شده، بعد از گذشتن ۱۲ دقیقه جذب نوری توسط دستگاه اسکتروفوتوتری در طول موج ۷۰۰ نانومتر خواهد شد.

پس از انجام آزمون‌های آزمایشگاهی، تحلیل آماری با مکم نرمافزار تحلیل آماری SPSS برای این منظور آزمون‌های آماری آنالیز یک طرفه و پست تکی با حد معنی‌داری ۰/۰۵ قابل انجام شد.

یافته‌ها
عصاره‌های هیدروالکلی اندام هواپی و زیرزمینی Onosma dichroanthum. باعث کاهش معنی‌دار قند خون در مقایسه با متفورمین (۵ میلیگرم/کیلوگرم) شد و تأثیر عصاره اندام زیرزمینی قدری بیشتر از اندام هواپی بود. لیثه اثر هدافزایی معنی‌داری بین متفورمین و عصاره‌ها وجود نداشت (نمودار ۱).

نتایج قند خون
نمودار ۱- مقایسه میزان کلوزک خون بر حسب (میلیگرم/کیلوگرم) بین همه گروه‌ها با گروه تکاری STZ در مراقبت.

اختلاف معنی‌دار نسبت به گروه شاهد دیابتی (STZ) عصاره ۱ عصاره هیدروالکلی اندام هواپی، عصاره ۲ عصاره هیدروالکلی STZ

اندام هواپی باعث افزایش معنی‌دار در وزن شد که البته اثر هدافزایی بین عصاره و متفورمین مشاهده نشد (نمودار ۱).

پس از القای دیابت، وزن موشها نسبت به گروه شاهد کاهش معنی‌دار داشت و تجویز متفورمین باعث افزایش معنی‌دار وزن شد. تجویز به تنهایی عصاره‌های هیدروالکلی
به‌نظر می‌رسد که همزمان با اداس‌هایی که محققین قصد خوانی‌ها، پاسخ آنها به محوری درد حرارتی توسط دستگاه هات پلت اداس‌کننده مشاهده شد. در موش‌های دیابتی همانطور که انتظار می‌رفت، هایپروآنزیا (واقعه زمانی در پاسخ به محور حرارتی) مشاهده شد و در گروه‌های درایافت‌کننده متفق‌می‌شد.

نمودار 2- مقایسه میزان وزن موش بر حسب گرم بین گروه‌های دریافت‌کننده عصاره با گروه دریافت‌کننده متفق‌می‌شد.

أخلاقي معنی‌دار: P<0.001 مقایسه با کروه STZ (کنترل دیابتی) عصاره 1 عصاره هیدرواکسی اندام موایی، عصاره 2 عصاره هیدرواکسی اندام موایی 50 میلی‌گرم/کیلوگرم. ادامه مشاهده شد. در اینجا نیز اثر عصاره هواپی از موتور بود (نمودار 3).

نمودار 3- مقایسه میزان مورفوباتی (هایپروآنزیا) (زمان وقفه) در گروه‌های دیابتی.

اختلاف معنی‌دار: P<0.001 مقایسه با کروه STZ (کنترل دیابتی). عصاره 1 عصاره هیدرواکسی اندام موایی، عصاره 2 عصاره هیدرواکسی اندام موایی، شاهد مثبت: متفق‌می‌شد با 50 میلی‌گرم/کیلوگرم.

در موش‌های دیابتی، کاهش معنی‌دار در میزان کلسترول در بافت‌های کبدی و مغزی مشاهده شد و متفق‌می‌شد و عصاره‌های هیدرواکسی اندام موایی و هیبریدی باعث افزایش معنی‌دار نبود (نمودار 4).

اندام موایی بیشتر از اندام هیبریدی بود. اگرچه ترکیب عصاره و متفق‌می‌شد باعث افزایش تأثیر در کلسترول کبدی شد، اما این اثر هیپرایا معنی‌دار نبود (نمودار 4).
نمودار ۴ - مقایسهٔ میزان گلوتاتیون کبد (میکرومول/گرم) در گروه‌های مورد مطالعه.

شبدن و تأثیر عصاره اندام زیرزمینی پیشتر از اندام هوایی بود. اگرچه ترکیب عصاره و متفاوی به تاثیر تأثیر بر میزان MDA شد، اما این اثر همافزایی معنی‌دار نبود (نمودار ۵).

نمودار ۵ - مقایسهٔ میزان مالونیل دی‌آدنوئید کبد در گروه‌های مورد مطالعه.

هیچ‌یک میزان محتوا تام فلوریدی موجود در عصاره بر اساس نمودار کربن‌سیستیمی در قسمت هوایی برابر ۲۲ میلی‌گرم کنترل‌سیستیمی در هر گرم عصاره و در قسمت رشته ۱۹ میلی‌گرم کنترل‌سیستیمی در هر گرم عصاره بود.

۶۵ میلی‌گرم کالک اسید در هر گرم عصاره و میزان محتوا تام فلوریدی موجود در قسمت رشته گیاه برابر ۴۸ میلی‌گرم کالک اسید در هر گرم عصاره بود.

i- Folin–ciocalteu
ii- Quercetin
مجرگان نادری و همکاران

کد موش سوری آمده است.

در جدول 1، تأثیر درمان‌های مختلف بر پارامترهای مختلف دیابت و شاخص‌های استرس اکسیدانی در مغز و مغز، با کاهش در جدول 1. مقایسه درمان‌های مختلف دارویی بر شاخص‌های دیابت و اکسیدانی استرس در مغز، در مقایسه با کروه شاهد (نیترال سالیسیلی استر) پارامتر

<table>
<thead>
<tr>
<th>درمان</th>
<th>اسپریتوسین</th>
<th>DMSO</th>
<th>نت‌های سالین</th>
<th>ترانسیل‌نین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
<td>متوسط</td>
</tr>
<tr>
<td>0</td>
<td>0.15</td>
<td>0.27</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>0.05</td>
<td>0.18</td>
<td>0.36</td>
<td>0.59</td>
<td>0.89</td>
</tr>
<tr>
<td>0.10</td>
<td>0.21</td>
<td>0.42</td>
<td>0.67</td>
<td>1.01</td>
</tr>
<tr>
<td>0.15</td>
<td>0.24</td>
<td>0.48</td>
<td>0.73</td>
<td>1.05</td>
</tr>
<tr>
<td>0.20</td>
<td>0.27</td>
<td>0.54</td>
<td>0.80</td>
<td>1.10</td>
</tr>
<tr>
<td>0.25</td>
<td>0.30</td>
<td>0.60</td>
<td>0.85</td>
<td>1.15</td>
</tr>
</tbody>
</table>

بحث

مکانیسم داروی خطر خون خونگی، برای بیماران دیابتی تبدیل می‌شود. کاهش Gallega officinalis هایپرگلیسمی از طریق خون کلسترولونز کبدی و همچنین بهبود سیگما و عملکرد انحلال در سلول های بیوش. اما مکانیسم دقیق آن کاملاً مشخص نیست و شیوه از افزایش تغییرات فعالیت AMPKiii در صورت مصرف متقون و وجود دارد. زیرا از عوارض مصرف متقون است. لکتیک است که معمولاً در اثر ترسامی کلیه و مصرف دوزه‌ای بالای متقونان ایجاد می‌شود. که ممکن است خطرناک باشد و معنی به دردهای عضلانی و در مواردی منجر به کام پر می‌شود.

براساس نتایج حاصل از مطالعات حاضر، عصاره Gallega officinalis که تیروگلیسی و (comoroma) گرزینه (Boraginae) ژنیه یا که ترکیب قابل قبیل است. این عصاره همچنین باعث کاهش اکسیدانی استرس در بدن کبدی و خون می‌شود. در این اثرات همگزینی در کاهش نمایندگان بر از متقون و عصاره اندام‌های خونی و زیترزینی مشاهده می‌شود این آنزیم در کاهش قود خون دیابت و کاهش پرتزیسیون اثرات اندام‌های زیترزینی انتکی بهتر بود. اما در بسیاری از شاخص‌ها، مانند فاکتور وزن و کاهش نرخ در فاکتور وزن و کاهش نرخ در فاکتور وزن و کاهش نرخ در فاکتور وزن و کاهش نرخ در

- AMP-activated protein kinase

Gallagae officinalis

Onosma dichroanthum

167
مقایسه با متفقون بود. همچنین تأثیر اندام هواپی در سیبیری از شاخص‌های بیشتر از اندام زیرزمینی بوده است. اگرچه تأثیر هموگلوبین A1c و عصاره هیدروالکلی گیاه گل کازرابان (Echium amoenum) و لیپورفیترونیهای پلاسماتی در مطالعاتی توسط وی و همکارانش بر روی عصاره مانند اندام گال کازرابان (Echium amoenum) مشخص شد که عصاره آپیا کازرابان باعث افزایش سطح سروتونین و دوبنیمین در بالعمر می‌شود.

یک مطالعه در راستای مطالعه‌های ترخیز کومار در ترکیب اوکولین در ایران و نکته است که اثر آنتی‌دیابتی کومار در بالعمر را نشان داد. و یک مطالعه انجام شده است که عصاره اندام هواپی و زیرزمینی گیاه گل کازرابان (Echium amoenum) در دیابتی‌های دیابتی از جمله دیابت نوع دو نشان دهنده می‌گردد که گل کازرابان (Echium amoenum) باعث افزایش سطح سروتونین و دوبنیمین در بالعمر می‌شود.

References

5. Alizadeh M. Harison basis of medical Sciences, endocrinology, Persian translate; Esharat Pub co 2002; 1: 165-220. [Farsi]
20. Parvarizi M. Study of combinational therapy of cinna-
Abstract

Introduction: Diabetes is a metabolic disease with hyperglycemia, decrease in insulin secretion or desensitization of peripheral cells to insulin. Onosma is a species of Boraginaceae which although it is used in traditional medicine for its anti-oxidant, anti-inflammatory and antibiotic properties, data on its anti-diabetic effects are limited. This research has been designed to assess its' anti-diabetic, anti-neuropathy and anti-oxidative stress effects in an in-vivo model of diabetes.

Materials and Methods: Hydroalcoholic extract was prepared from over-ground organs, (shoots and leaves) and underground organs (roots), and administered by gavage (50 mg/kg) for 3 weeks to mice in a streptozocin induced diabetic model. After the treatment period, blood glucose, weight and neuropathy were determined and for positive control, metformin (50 mg/kg) was used. After removing the brain and liver of mice and homogenization of tissues, the MDA and Glutathione contents of the tissues have been assayed by a colorimetric method.

Results: Results of this research show that hydroalcoholic extract of Onosma d. has anti-diabetic properties which have beneficial effects for some parameters such as hypoglycemia and reducing MDA, the effect of underground organs as roots extracts were better. However for increasing weight, diminishing neuropathy and increasing GSH contents, the effects of over-ground organs as leaves and shoots extracts were more significant.

Conclusion: Results of this research indicate the anti-diabetic and anti-neuropathy properties of Onosma dichroanthum as a herbal medicine, related to its anti-oxidant abilities and limited side effects, can hence be used for treatment with other anti-diabetic drugs.

Keywords: Onosma dichroanthum, Diabetes, Neuropathy, Oxidative stress, GSH, MDA