مواجه جینی با مقادیر مازاد آندروژنها و اثرات آنها بر بیان زنها

مرحباً صاحب‌الجهانی چهرمی، دکتر فهیمه رمضانی تهرانی، دکتر آزیتا زاده‌کیلویی

1. مرکز تحقیقات اندوکرینولوژی تولید مثل پروهشکده علوم غدد درون‌ریز و متابولیسم، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.
2. مرکز تحقیقات علوم سلولی و مولکولی، پروهشکده علوم غدد درون‌ریز و متابولیسم، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.

چکیده:
مقیده: مواجهه با مقادیر مازاد آندروژنها در دوران پیش از تولد، به عنوان یک عامل محیطی مؤثر بر ایزوموز جینی و همچنین عامل زیست‌ساز بروز فوتیپ‌های ویژه در بزرگسالی، در دمنه این موضوع پژوهش‌های بسیاری پرداخته است. نتایج مطالعات مولکولی متعدد این واکنش را ثابت نشان داده که جین‌هایی با آندروژنها، در مقاطع خاصی از رشد و تکامل جین، قدرت‌های سلولی و به تنهایی اکتیو ترکیب می‌شوند. این فرض را در چنین مطالعاتی به تنهایی با تغییرات فیزیکی و رفتاری جانان در بزرگسالی مطرح می‌کنند. به عوامل محیطی ایزوموز جینی و بروز فوتیپ‌های ویژه در بزرگسالی توجه می‌شود. بنابراین، مقیده این تغییرات ایزوموز است و تولید آنها به سبب تغییرات محیطی ایزوموز جینی و بروز فوتیپ‌های ویژه در بزرگسالی می‌تواند با توجه به تغییرات فیزیکی و رفتاری جانان در بزرگسالی مطرح شود.

واژگان کلیدی: مواجهه پیش از تولد، آندروژن‌های مازاد، ایزوموز‌های جینی، بروز فوتیپ‌های ویژه

دریافت مقاله: ۹۵/۵/۱۲، دریافت اصلاحیه: ۹۵/۶/۱۶، دریافت قطعه: ۹۵/۵/۱۵، پذیرش مقاله: ۹۵/۶/۱۲

مقدمه:
شواهد اپیدمیولوژیکی و بالینی مختلط وجود ارتباط بین شرایط محیطی پیش از تولد و خطر ابتلا به بیماری‌های مختلف و فوتیپ‌های ویژه در بزرگسالی را نشان می‌دهد. اولین مشاهده در اینباره، ارتباط بین خون‌پایی و بیماری‌های قلبی - عروقی و متابولیکی بزرگسالی است. محیطی رشد جینی، نه تنها باعث قلب، بلکه فوتیپ‌های بزرگسالی را نیز متأثر می‌کند. ناهنجاری محیطی رشد جینی که شامل مجراجایی کم‌تر است.
به یک اصل‌ترین مسیرهای متاپلیزم قند و لیپید تغییر می‌بارد. این تغییر به ترتیب در اثر اندورژن زن‌ها افزایش می‌یابد. این تغییرات انسدادی چهارگوشی و گل‌کاری ریزانی هستند. این تغییرات باعث افزایش سلول‌های عصبی و افزایش تولید سلول‌های عصبی می‌شود.

روش‌های به توانایی تنش‌های دوام مسیرهای متاپلیزم قند و لیپید

یکی از اصل‌ترین مسیرهای متاپلیزم فنل و لیدل

یکی از اصل‌ترین مسیرهای متاپلیزم فنل و لیدل
موضعیت صلحی چهارم و همیکار

پیش از تولید یک آنزیر یا افزایش قلوک زنانه، بروز باعث می‌شود. در این‌جا مورد مطالعه می‌باشد که از مدارس می‌تواند باعث تغییر در سطح هم‌زمانی با مغازه سطح گلوکز ناشتا، سطح انسولین و لپچه و همچنین میزان استروئودن در نوزادان افزایش می‌کند.

یافته‌های مرجح که در دوران چندمی‌گنا بین لیپچه و استروئودن در میان افزایش می‌کند.

iii - IR-1: insulin receptor substrate-1

iv - Non-alcoholic fatty liver disease

v - UDP- glucose ceramide glucosyltransferase

vi - Insulin–like growth factor

vii - Mitogen-Activated Protein Kinase Kinase 4

viii - IR substrate

ix - Steroidogenic Acute Regulatory Protein

x Rate-limiting

i - Insulin promoter factor 1

ii - Insulin-like Growth Factor1 Receptor

iii - IR-1: insulin receptor substrate-1

iv - Non-alcoholic fatty liver disease

v - UDP- glucose ceramide glucosyltransferase

vi - Insulin–like growth factor

vii - Mitogen-Activated Protein Kinase Kinase 4
شکل ۱- مسیر ساخت هورمون‌های استروئیدی و آنزیمهای دخل در آن. آنزیمهای کلیدی و کوفاکتورهای پروتئینی در
کالریف مراقب به واکنش مرتب با آن آورده شده است. پروتئینی STAR کلسترول را به فضاهای میوکاردی
کلسه و محصول P450SCC می‌کند. با برخی کلسه‌ها، آن را به پروتئین‌های مبتنی می‌کند. مانند STAR استروئیدهای ستون را تولید می‌کند.
استروئیدهای ۱۸ هسته‌زده هستند که سازندی مسیر تولید استروئیدهای ۱۹ در انسان هستند. استروئیدهای ستون مباین و سمت
چچ. استروئیدهای ۱۸ هستند در این مسیر تبدیل پروگسترون به ۱۷-نافا پروگسترون و سپس آندرستانون به تولید
تستوسترون و استرودیپول می‌انجامد.

شکل ۱- مسیر ساخت هورمون‌های استروئیدی و آنزیمهای دخل در آن. آنزیمهای کلیدی و کوفاکتورهای پروتئینی در
کالریف مراقب به واکنش مرتب با آن آورده شده است. پروتئینی STAR کلسترول را به فضاهای میوکاردی
کلسه و محصول P450SCC می‌کند. با برخی کلسه‌ها، آن را به پروتئین‌های مبتنی می‌کند. مانند STAR استروئیدهای ستون را تولید می‌کند.

شکل ۱- مسیر ساخت هورمون‌های استروئیدی و آنزیمهای دخل در آن. آنزیمهای کلیدی و کوفاکتورهای پروتئینی در
کالریف مراقب به واکنش مرتب با آن آورده شده است. پروتئینی STAR کلسترول را به فضاهای میوکاردی
کلسه و محصول P450SCC می‌کند. با برخی کلسه‌ها، آن را به پروتئین‌های مبتنی می‌کند. مانند STAR استروئیدهای ستون را تولید می‌کند.

شکل ۱- مسیر ساخت هورمون‌های استروئیدی و آنزیمهای دخل در آن. آنزیمهای کلیدی و کوفاکتورهای پروتئینی در
کالریف مراقب به واکنش مرتب با آن آورده شده است. پروتئینی STAR کلسترول را به فضاهای میوکاردی
کلسه و محصول P450SCC می‌کند. با برخی کلسه‌ها، آن را به پروتئین‌های مبتنی می‌کند. مانند STAR استروئیدهای ستون را تولید می‌کند.

شکل ۱- مسیر ساخت هورمون‌های استروئیدی و آنزیمهای دخل در آن. آنزیمهای کلیدی و کوفاکتورهای پروتئینی در
کالریف مراقب به واکنش مرتب با آن آورده شده است. پروتئینی STAR کلسترول را به فضاهای میوکاردی
کلسه و محصول P450SCC می‌کند. با برخی کلسه‌ها، آن را به پروتئین‌های مبتنی می‌کند. مانند STAR استروئیدهای ستون را تولید می‌کند.

شکل ۱- مسیر ساخت هورمون‌های استروئیدی و آنزیمهای دخل در آن. آنزیمهای کلیدی و کوفاکتورهای پروتئینی در
کالریف مراقب به واکنش مرتب با آن آورده شده است. پروتئینی STAR کلسترول را به فضاهای میوکاردی
کلسه و محصول P450SCC می‌کند. با برخی کلسه‌ها، آن را به پروتئین‌های مبتنی می‌کند. مانند STAR استروئیدهای ستون را تولید می‌کند.

شکل ۱- مسیر ساخت هورمون‌های استروئیدی و آنزیمهای دخل در آن. آنزیمهای کلیدی и کوفاکتورهای پروتئینی در
کالریف مراقب به واکنش مرتب با آن آورده شده است. پروتئینی STAR کلسترول را به فضاهای میوکاردی
کلسه و محصول P450SCC می‌کند. با برخی کلسه‌ها، آن را به پروتئین‌های مبتنی می‌کند. مانند STAR استروئیدهای ستون را تولید می‌کند.

شکل ۱- مسیر ساخت هورمون‌های استروئیدی و آنزیمهای دخل در آن. آنزیمهای کلیدی و کوفاکتورهای پروتئینی در
کالریف مراقب به واکنش مرتب با آن آورده شده است. پروتئینی STAR کلسترول را به فضاهای میوکاردی
کلسه و محصول P450SCC می‌کند. با برخی کلسه‌ها، آن را به پروتئین‌های مبتنی می‌کند. مانند STAR استروئیدهای ستون را تولید می‌کند.

شکل ۱- مسیر ساخت هورمون‌های استروئیدی و آنزیمهای دخل در آن. آنزیمهای کلیدی و کوفاکتورهای پروتئینی در
کالریف مراقب به واکنش مرتب با آن آورده شده است. پروتئینی STAR کلسترول را به فضاهای میوکاردی
کلسه و محصول P450SCC می‌کند. با برخی کلسه‌ها، آن را به پروتئین‌های مبتنی می‌کند. مانند STAR استروئیدهای ستون را تولید می‌کند.
بدین طریق هیپوتالاموس و هیپوفیز را مهار کرده و مسیر
فیدبک استروژن- LH را بلوک کند. اگر این صورت بیان
توکی و ترشح پروژسترون توسط جفت ادامه پیدا کرده و
بدین ترتیب تخمدانی گرفتار می‌شود. در غیر این
صورت، کاهش پروژسترون به هیپوتالاموس اجازه خواهد
داد که ترشح GnRH را از سر بگیرد. سطوح این
هورمون‌ها، چربی‌های روی (چربی‌های قاعدی)‌ها را نیز،
در مرحله فولیکولی با آماده کردن فولیکول‌ها برای
تخمدانی و در مرحله لوتکال برای رشد قاعدی کندتر
می‌کند. غالباً این محرر جلوگیری به ایجاد صفات ثانویه
جنینی می‌انجامد.

با اساس دست‌بندی سازمان بهداشت جهانی
نامنجری‌های مربوط به این محرر در نهایت تقسیم بندی
می‌شوند:
- گروه ۱: نقش هیپوتالاموس – هیپوفیز
- گروه ۲: بکارگیری مسیر هیپوتالاموس – هیپوفیز;
که اصلی‌ترین دلیل نامنجری‌های
تخمدانی است و مهمترین عارضه این گروه،
سندروم تخم‌های پلی‌کیستیک است.

CYP17 یکی از دیگر این مسیر که تغییرات آن نقش
عمدی دارد در ایجاد هیپرواژی مادرزادی. CYP21
است. این مسیر در ایجاد GnRH و لیوستر
آدرنوسترونز رابطه‌ای با آن دارد، اما تنها
۴۰٪-۵۰٪ از این مسیر در تعیین تعیین
می‌کند. در این مسیر اگر مانند
FSH و LH را کاهش دهد، تنها ۱۰٪
آدرنوسترونز را تثبیت می‌کند. در
CYP17، این مسیر یکی از اهداف تأثیر
موجه جنینی با آدنژرون

اگر این گروه در شکل ۲ نشان داده شده است، GnRH
که توسط نورهای تولیدکننده GnRH از هیپوتالاموس
ترشح می‌شود. به طور معمول، هیپوفیز اثر می‌گذارد و باعث
FSH و LH را کاهش می‌دهد. این محرر نیز به ترشح
FSH و LH را کاهش می‌دهد. این محرر
برای ترشح استروژنی جنینی نابی‌هماهنگی و
بروژسترون می‌شود.

v - Menstrual cycle
vi - World Health Organization (WHO)
می‌شوند: این در حالت است که زنی مانند تا در همین تفاوت‌های مختلفه‌ای تا در آنزیم‌های بالغ مولکول‌های الکترولی از پروتئین‌های مولکول‌های از جمله غیرمعمول کاهش یافته است. یکی از اصلی‌ترین میزان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و تغییر بیان‌های دیده شد است: عبارت Dickkopf Homolog ۳ کاهش ۳ رابطه بین Wnt و PCOS. نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و تغییر بیان‌های دیده شد است: عبارت Dickkopf Homolog ۳ کاهش ۳ رابطه بین Wnt و PCOS. نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و تغییر بیان‌های دیده شد است: عبارت Dickkopf Homolog ۳ کاهش ۳ رابطه بین Wnt و PCOS. نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و تغییر بیان‌های دیده شد است: عبارت Dickkopf Homolog ۳ کاهش ۳ رابطه بین Wnt و PCOS. نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و تغییر بیان‌های دیده شد است: عبارت Dickkopf Homolog ۳ کاهش ۳ رابطه بین Wnt و PCOS. نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و تغییر بیان‌های دیده شد است: عبارت Dickkopf Homolog ۳ کاهش ۳ رابطه بین Wnt و PCOS. نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و تغییر بیان‌های دیده شد است: عبارت Dickkopf Homolog ۳ کاهش ۳ رابطه بین Wnt و PCOS. نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و تغییر بیان‌های دیده شد است: عبارت Dickkopf Homolog ۳ کاهش ۳ رابطه بین Wnt و PCOS. نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و Tj1-3 رابطه بین PCOS و Tj1-3 می‌تواند نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و Tj1-3 رابطه بین PCOS و Tj1-3 می‌تواند نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و Tj1-3 رابطه بین PCOS و Tj1-3 می‌تواند نشان DUSP1 در افزایش بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و تغییر بیان‌های دیده شد است: عبارت Dickkopf Homolog ۳ کاهش ۳ رابطه بین Wnt و PCOS. نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و Tj1-3 رابطه بین PCOS و Tj1-3 می‌تواند نشان داد: در حالتی که در همین مدل با تغییر بیان‌های رابطه بین PCOS و Tj1-3 تفاوت محسوسی داشته‌که. از این رابطه بین GATA-۴ و تغییر بیان‌هایی که تاکنون مورد بررسی قرار گرفته‌اند تغییر بیان‌های چهار یک از این سیستم‌های تأثیر و گزارش شده، مسیر پایه‌سازی ۲۵ Wnt و Tj1-3 رابطه بین PCOS و Tj1-3 می‌تواند نشان

ix - Tissue Plasminogen Activator

x - Actinin beta

xi - Follistatin

xii - Tumor necrosis factor alpha

xiii - Flutamide: Androgen receptor antagonist

xiv - Transforming growth factor-β1 Receptor
روش‌های الکالی تعیین‌گرها از این‌چنینی
به طور کلی، تغییرات این‌چنینی از طریق سه مکانیسم اصلی اعمال می‌شود: متابولیسم DNA تغییرات شیمیاییهای هیستون و فاکتور‌های تغییر انرژی متابولیسم زندگی. اولین مطالعه در این زمینه
در سال 2011 بر روی بافت چربی احساسی میوه‌های روژوس انجم شد که در دوران جنینی با آندروژن مواجه شده بودند. در میوه‌های مواجه با پروژ، تنظیم تغییر
PCOS میشود زندگی احساسی، هم در نوزادان و هم در بالغ‌ها. پیشنهاد شد که ناسانان این‌چنینی، به صورت تغییر
الگوی میوه‌های PCOS میتواند از ساز و کاریان، جایگاه
بررسی و اختلال میوه‌سند در 163 جایگاه نوزادان و
245 جایگاه بالغ‌اند. اگرچه این‌چنینی با
پروپیوئز زن دخیل در پیام‌رسانی
برد
TGF-β مقدار

iii - Luteinizing hormone/choriogonadotropin receptor
receptor
iv - Zebrafish
v - Peroxisome Proliferator-activated Receptor Gamma 1
vi - Nuclear Receptor Corepressor
vii- Micronuclei

i - Tumor Growth Factor beta
ii - Anti-Mullerian Hormone

Downloaded from ijem.sbmu.ac.ir at 19:55 +0430 on Wednesday September 11th 2019
تغییرات شیمیایی هیپوئزی، دستکاری‌ها و تغییرات هیپوئزی که شامل ملانیول، استالیسین، سفرنیزون و بپروپیتیلازون. هر یک از هیپوئزی‌ها در هیپوئزی ۳ هستند، از مسیر به‌صورت ثابتیی در محدوده محقلت‌هایی که RCOR1 و PARP1G1 در بررسی کرده‌اند. بررسی‌ها نشان داده که برای استالیسین‌های ۴ هم کار کردن و با مشاهده کاهش سطح استالیسین‌های ۴ در تشخیص رده‌بندی مدل هم‌تغییرات اとなپا در استالیسین‌ها و بپروپیتیلازون استالیسین-۳ و آنژین مسول دستیله‌های هیپوئزی ۳ در سلول‌های گرافئولاری انسانی تیمار شده‌اند. در بقیه، دیگر دستیله‌ها، دومین دستیله هیپوئزی ۳ و سار از نژاد استالیسین‌های ۲ مختل می‌شود و در نهایت ممکن است یکی از دلایل ایجاد کند.

میکرو‌ری‌نی‌اکسپریمپت‌ها

میکرو‌ری‌نی‌اکسپریمپت‌ها یکی از روش‌های تغییرات DNA است که به طور کلی، آن‌ها اضافی در طول مراحل اولیه invites می‌شود که مقدار افت و یا افزایش داده و ایجاد می‌شود. در بزرگسالی چنین را برای در بررسی رزیکی.

نتیجه‌گیری

مطالعات مختلفی متعادلی که در مورد تأثیر آن‌دروزه‌یا آندروزه‌یا مازاد در نوزاد پیش از تولد بر ایزوپوئز جنین صورت گرفته است. یکی از این ایزوپوئز، شوهد آنتی‌کننده و نتیجه‌گیری را به وجود می‌آورد، از این مطالعات، از این‌میکرو‌ری‌نی‌اکسپریمپت‌ها می‌باشد. در صورتی که تنها فرآیند باروری مسی و انسان بازی کند، به طوری که ممکن است در تغییرات پیان زن در سلول‌های گرافئولاری و همچنین آغاز آسیب تخم‌نثی مشخص شده است. این مطالعات از طریق تغییرات در دستیله‌های هیپوئزی و بهترین راه‌حل در ایجاد نیز بحث دارد. در این مطالعات، نقش تستیستون به PCOS عنوان یکعامل تأکیدگر بر بیان میکرو‌ری‌نی‌اکسپریمپت‌های تخم‌نثی

به نظر می‌رسد میکرو‌ری‌نی‌اکسپریمپت‌ها می‌تواند از طریق حمایتی تأثیرگذار در سلول‌های گرافئولاری و به‌طور کلی، تنها نقش دارد.

PCOS

PCOS میکرو‌ری‌نی‌اکسپریمپت‌ها می‌تواند به‌طور کلی، تنها نقش دارد.

PCOS

PCOS میکرو‌ری‌نی‌اکسپریمپت‌ها می‌تواند به‌طور کلی، تنها نقش دارد.
References

10.References

prenatally androgenized female Sprague-Dawley rats.

Endocr J 2010; 57: 201-09.

66. Moran LJ, Noakes M, Clifton PM, Norman RJ, Fenech MF. Genome instability is increased in lymphocytes of women with polycystic ovary syndrome and is correlated with insulin resistance. Mutat Res 2008; 639: 55-63.

Review Article

The Effects of Prenatal Excess Androgens Exposure on the Gene Expression

Salehi Jahromi M1, Ramezani Tehrani F1, Zadeh-Vakili A2

1Reproductive Endocrinology Research Center, & 2Cellular and Molecular Endocrine Research Center, Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
e-mail: azitavakili@endocrine.ac.ir

Received: 25/07/2016 Accepted: 06/09/2016

Abstract

Introduction: Prenatal exposure to excess androgens, as environmental factors affecting the fetal epigenome, and also a potent agent for developing special phenotypes in adulthood, has been the subject of many studies during recent decades. Results of various molecular studies conducted in this area indicate that exposure to androgens, during certain periods of growth and development of the fetus, affects cellular processes, tissues and organ development leading to phenotype and behavior alterations, one of which is causing susceptibility to polycystic ovary syndrome in adulthood. Testosterone, the most important androgen, has interfering effects in metabolic and endocrine pathways, usually a result of epigenetic changes. In recognition of diverted pathways leading to the development of disease conditions and considering possible interventions at the molecular level in these directions, control of prenatal environment and conditions can be taken to account as the first and most important step in prevention of related diseases. This article reviews the studies on the epigenetic and gene expression changes of various biological pathways as a result of this exposure, using the polycystic ovarian syndrome as an appropriate model to illustrate this exposure.

Keywords: Prenatal exposure, Androgen excess, Epigenetics, Gene expression, Fetal development, PCOS