چکیده
مقدمه: اثرات بعضی از گیاهان خانواده گیاه سوسمانی که عنصری از این خانواده است، بر کاهش گلکز، لیپیدها و آنزیم‌های خون گزارش شده است. هدف از مطالعه حاضر، بررسی اثر عصاره ی هیدروالکلی خرگروی به شکل های عملکردی کبد و کلیه در موش‌های صحراپایی در دیابتی شده به وسیله آزمون‌های مختلفی بود. پژوهش به مسی و روش‌های 20 سر موش صحراپایی تکنیک آب‌مطهر، خون اول و دوم (شاهرخ سالم و دیابتی) دریافت کنندی آب مطهر، گروه‌ی قنال درمان دیابتی گونه بی‌بیک میلی‌گرم وزن بدن عصاره ی هیدروالکلی گیاه خرگروی و گروه‌ی چهارم پنجم (دیابتی تحت درمان 1 و 2) به ثبت روزانه 50 و 100 میلی‌گرم وزن بدن عصاره‌ی هیدروالکلی گیاه خرگروی و موش‌های صحراپایی به وسیله آزمون‌های مختلفی دوباره شدند. طول دریای آزمایشی، پس از یک روز به میزان وزن و گلکز ناشنا به صورت هفته‌اندازی و یک ماه نمونه‌های خون از قلب‌جمعی اوری و شاخص‌های آلت سوسمان نفاطانسافار (ALT)، سوسمان نفاطانسافار (AST)، کرایتین و آوره خون اندازه‌گیری شد. پایین‌ترین عصاره‌ی هیدروالکلی گیاه خرگروی، (BUN) توزیع اوره خون (ALB)، بالاترین دارای افزایش دانه. در پایان دیابتی تحت درمان آزمایش دانه. تیکه‌گیری نتایج نشان دادن که عصاره‌ی هیدروالکلی گیاه خرگروی در صورت استفاده به دوز هر سه بهره بخش خاصی عامل مکمل گیاه و کبد در شرایط مورد آزمایش می‌شود.

واژگان کلیدی: دیابت قندی، خرگروی، کبد، کلیه، موش صحراپایی

مقدمه
دبیات قندی سبب ایجاد اختلالات متعددی در کلیه، اعصاب، چشم، قلب و عروق و دیگر اعضای بد می‌شود.
تری کالریه، فشار خون، گلکربی، پلاکده‌ها و ترومبوسیدها

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.

درمان است و باید به دنبالی مشورت.

بتایانی در جلوگیری از تغییرات آنزیمی گلیکان، کبد مانند ALT و AST در موشهای دیابتی شده موتوری به دید

تغییرات فناوری در میزان آنزیم‌های کبدی و حساسیت عصبی در حالت موتوری به دید

مکانیسم بی‌عاملی است و باید به دنبالی مشورت.
داشتهای پزشکی پاسخ انتقال غذایی را این راحتی اخلاق دانشکده پزشکی دانشگاه علم پزشکی پاسخ رضی دیاتيت و قربانی خود را به گروه ۸ تا ۲۵ ساله‌ها نسبت داده و دو گروه سالم و شاهد ۵ میلی‌گرم کلیولوک وزن بدن عصاره‌ی هیدروالکه خرکیوی، و گروه‌های چهارم و پنجم دیابتی تحت دو گروه ۵۰ و ۱۰۰ میلی‌گرم کلیولوک وزن بدن عصاره‌ی هیدروالکه خرکیوی بودند. نشانه‌های در دو گروه ۲۳ نفر سانتی‌گراد و دو گروه دوازده ساعت تاریکی اروشنشینی نشان دادند. آپ و غذا در تمام دوره‌ی آزمایش بدون محدودیت در انتخاب آنها گزارش گردید. برای این دادیات از دو سیستم تست راکسین فیزیکالی میزان ۵ میلی‌گرم کلیولوک وزن بدن به صورت نک در دو گروه SPSS نشان دادند.

نتایج:

یافته‌ها:

مقایسه میانگین وزن و دنیای دیابتی‌ها در گروه‌های مختلف اختلاف معنی‌داری را نشان داد. در حالت که در گروه دوباره سالم، میانگین وزن بدن در گروه ۱۳۰/۱۸ میلی‌گرم کلیولوک وزن بدن گروه دپان دیابتی نسبت به سایر گروه‌ها کاهش معنی‌داری داشت (p<0/۵). بنابراین، میزان گروه دیابتی تحت دو گروه سالم و گروه‌های دیابتی تحت دیابت دنیای عصاره‌ی هیدروالکه خرکیوی، اختلاف معنی‌داری مشاهده نشد. به عبارتی، تجویز عصاره‌ی هیدروالکه خرکیوی فقط باعث انفالی‌سی‌های مشاهده نمی‌شود. در میزان وزن در گروه‌های دیابتی تحت دیابت دنیای سالم (جدول ۱).

جدول ۱- مقایسه‌ی اثر عصاره‌ی هیدروالکه خرکیوی بر وزن بدن (گرم) در گروه‌های مورد مطالعه

<table>
<thead>
<tr>
<th>شاهد تحت دیابت (گرم)</th>
<th>دیابتی تحت دیابت (گرم)</th>
<th>شاهد تحت دیابت (گرم)</th>
<th>دیابتی تحت دیابت (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز اول</td>
<td>۲۳۶/۲۷±۲۲/۸</td>
<td>۲۳۹/۱۰۴±۲۲/۸</td>
<td>۲۳۶/۲۷±۲۲/۸</td>
</tr>
<tr>
<td>روز دوم</td>
<td>۲۳۶/۲۷±۲۲/۸</td>
<td>۲۳۹/۱۰۴±۲۲/۸</td>
<td>۲۳۶/۲۷±۲۲/۸</td>
</tr>
<tr>
<td>آمار</td>
<td>۲۲۷/۳۰±۲۲/۸</td>
<td>۲۳۹/۱۰۴±۲۲/۸</td>
<td>۲۳۶/۲۷±۲۲/۸</td>
</tr>
</tbody>
</table>

در گروه دیابتی نسبت به گروه‌های دیابتی ریگر دیابتی و روز ۲۳ و ۲۴ دیابتی نشان داد (۵/۳±۲/۹).

بررسی میانگین ALP سرم در گروه‌های مختلف نشان‌گر افزایش معنی‌داری در گروه دیابتی نسبت به سایر گروه‌ها بود. میزان ALP در گروه دیابتی تحت دیابت دنیای سالم (جدول ۲).
کروه شاهد سالم و شاهد دیابتی اختلاف معنیداری داشت (جدول ۳ (p<0.05). میانگین ALT سرم در گروه‌های دیابتی تحت درمان ۱ و ۲ (به ترتیب ۲۳۷±۱۰۳ و ۲۳۳±۱۰۴ IU/L) تفاوت معنی‌داری با گروه شاهد دیابتی می‌باشد.

جدول ۲- مقایسه میزان ALP، AST از گروه‌های تحت درمان

<table>
<thead>
<tr>
<th>دیابتی تحت درمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>(۱۰۰۰ میلی‌گرم بر لیتر)</td>
<td>(۵۰۰ میلی‌گرم بر لیتر)</td>
</tr>
</tbody>
</table>

جدول ۳- مقایسه میزان ALP، AST از گروه‌های تحت درمان

میانگین ALP، AST سرم در گروه‌های تحت درمان (جدول ۳ (p<0.05). همچنین میانگین ALP، AST سرم در گروه‌های تحت درمان ۱ و ۲ تفاوت معنی‌داری با گروه شاهد دیابتی می‌باشد.

جدول ۴- مقایسه میزان ALP، AST از گروه‌های تحت درمان

<table>
<thead>
<tr>
<th>دیابتی تحت درمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>(۱۰۰۰ میلی‌گرم بر لیتر)</td>
<td>(۵۰۰ میلی‌گرم بر لیتر)</td>
</tr>
</tbody>
</table>

جدول ۵- مقایسه میزان ALP، AST از گروه‌های تحت درمان

میانگین ALP، AST سرم در گروه‌های تحت درمان (جدول ۳ (p<0.05). همچنین میانگین ALP، AST سرم در گروه‌های تحت درمان ۱ و ۲ تفاوت معنی‌داری با گروه شاهد دیابتی می‌باشد.

جدول ۶- مقایسه میزان ALP، AST از گروه‌های تحت درمان

میانگین ALP، AST سرم در گروه‌های تحت درمان (جدول ۳ (p<0.05). همچنین میانگین ALP، AST سرم در گروه‌های تحت درمان ۱ و ۲ تفاوت معنی‌داری با گروه شاهد دیابتی می‌باشد.
سسط کارتنین تاحمودی طبیعی شد (جدول ۲). میانگین میزان اوره در گروه شاهد دیبایت دارای افزایش معنی‌داری نسبت به شاهد سالم بود (p<0.05). میانگین میزان اوره در گروه تحت دانمان نسبت به گروه شاهد دیبایت کاهش معنی‌داری داشت (جدول ۲).

بحث

در این مطالعه، تجویز عصاره‌های هیدروکلرید کیاگس خرک‌گی را باعث افزایش وزن در موش‌های دیبایت تحت دانمان شد. مطالعات گذشته نشان داده‌اند که افزایش وزن موش‌های صحرایی باعث کاهش وزن دانمان می‌شود. به عوامل افزایش وزن در گروه شاهد دیبایت، به علت واحدهای بودن انسولین، سبب کاهش سایش لپی‌مدفون و در نهایت لاغری و بلوی پندرگذشت، آنزیمی که در جلوگیری از کاهش وزن موش‌های دیبایت شده را باعث می‌شود. در عملکرد این گروه، میزان اوره بر میزان والوپیرامین کاهش گرفت.

در این مطالعه، دانمان دارای داروهایی که در برخی از دستگاه‌های دانمان استفاده می‌شود، در حالت طبیعی خیلی کم است که باعث کاهش وزن در موش‌های دیبایت نمی‌شود. به عوامل افزایش وزن در گروه شاهد دیبایت، به علت واحدهای بودن انسولین، سبب کاهش سایش لپی‌مدفون و در نهایت لاغری و بلوی پندرگذشت، آنزیمی که در جلوگیری از کاهش وزن موش‌های دیبایت شده را باعث می‌شود. در عملکرد این گروه، میزان اوره بر میزان والوپیرامین کاهش گرفت.
دستگاه گوارش، بیماری‌های مزمن و حاد، شوک، تجلیل
عضلی و برخی بیماری‌های مزمن کبدی و کلیوی افزایش
باید. بر اساس یافته‌های قبلی، این دایت باعث گلوکیژ
سطح سرمی اوره می‌شود. افزایش کلسترول گلوکزها
هردیا که در غذا و آب و درب، این دایت دیده می‌شود.
("18") در مطالعه‌ای حاضر، میزان نیتروژن اوره در
گروه‌های دیابتی تحت درمان با عصاره‌های هیدروالکلی
خرگزی نسبت به کنترل دایتی کاهش یافته‌است. کیک از
عوارض مهم دیابت است. کلیوی افزایش. تحقیقاتی برای تحقیق نشان داده که سرطان‌های مغز و پریستنیک
فیبرون و بهبود بیشتر تولید کرده و از این طریق، استرس اکسیدیاتی در کلیه افزایش می‌یابد و
اختلال ارتباط خون و عوارض دیگر دیابت، آنتی-
MAM مستقیماً می‌تواند شکل دهی شود و در مقابل کنترل دقیق
گلیژی خون منجر به آسیب در پایه عوارض دیابتی می‌شود.
کاهش پلی‌فلامین کاهش پریشیون
کلیه‌ها در مواردی باید افزایش نیتروژن اوره و
کردن سرم می‌شود. در این مطالعه، میزان نیتروژن اوره
خون در درمان دیابتی افزایش یافته که این اینکه با
توجه به اینکه از این عوارض دیابت، این کلیوی است
قابل انتظار است. "19" پژوهش‌های فیزیولوژیک و کاهش
پریشیون کلیه‌ها در مواردی باعث افزایش غلظت گلوکز
اروزه خون می‌شود. "18" علاوه بر مواردی که افزایش
میزان گلوکز در خون باید کاهش کلیوی در دمای
استرس اکسیدیاتی در اثر برخی از عوارض دیابتی است.
"18" این ارتباط نشان می‌دهد که درمان میزان
کاهش دیابت می‌تواند به کاهش استرس اکسیدیاتی
عمل کند. "18" این ارتباط نشان می‌دهد که درمان میزان
کاهش دیابت می‌تواند به کاهش استرس اکسیدیاتی
عمل کند. "18" این ارتباط نشان می‌دهد که درمان میزان
کاهش دیابت می‌تواند به کاهش استرس اکسیدیاتی
عمل کند. "18" این ارتباط نشان می‌دهد که درمان میزان
کاهش دیابت می‌تواند به کاهش استرس اکسیدیاتی
عمل کند.
25. Liu CT, Sheen LY, Lii CK. Does garlic have a role as an antidiabetic agent? Mol Nutr Food Res 2007; 51: 1353-64.
29. Anjanyulu M, Chopra K. Nordihydroguaiaretic acid, a lignin, prevents oxidative stress and the development of
The Effect of Hydroalcoholic Extract of *Nectaroscordum Tripedale* on Liver and Kidney Functional Parameters in Streptozotocin-induced Diabetic Male Rats

Paydar S†, Jelodar Gh†, Mohammadi J‡, Mohammadi N§

†Department of Physiology, School of Veterinary Medicine, Shiraz University & ‡Medicinal Plants Research Center, Yasuj University of Medical Sciences, & §School of Dental, Shiraz Branch, Islamic Azad University, Shiraz, Shiraz, I.R. Iran

e-mail: j.mohammadi2005@yahoo.com

Received: 04/01/2016 Accepted: 26/04/2016

Abstract

Introduction: The reducing effects of some of tripedale family plants on blood glucose, lipids and enzymes have been reported. The aim of the present study was to assess the effects of the hydroalcoholic extract of *Nectaroscordum tripedale* on liver and kidney function in streptozotocin-induced diabetic rats. **Materials and Methods**: Forty male rats were randomly divided into five groups (n=8 each). Groups 1, 3 (normal control and diabetic control) received distilled water, group 2 received 50 mg/kg/day *Nectaroscordum tripedale* extract, and the groups 4 and 5 (treatment groups 1 and 2) received 50 and 100 mg/kg/day of the *Nectaroscordum tripedale* extract respectively for 21 consecutive days. Diabetes was induced by a single injection of streptozotocin in rats. At the end of the 21st day, blood samples were collected by heart puncture. Serum levels of ALP, AST, ALT, Alb, BUN, creatinine and urea were evaluated. **Results**: Results showed that the hydroalcoholic extract of *Nectaroscordum tripedale* can increase the average body weight in the treatments groups. ALP, AST, ALT, BUN levels decreased, whereas level of albumin (Alb) increased in a dose-dependent manner at the end experimental period (P<0.05). **Conclusion**: Our results showed that the extract of *Nectaroscordum tripedale* improved liver and kidney function in a dose dependent manner in experimental conditions.

Keywords: Diabetes Mellitus, *Nectaroscordum tripedale*, Liver, Kidney, Rat