مروری بر مدل رژیم پر چرب- استرپتوتوزوسین برای ایجاد دیابت

نوع ۲ در موس صحرایی

سودا غیبی، فاطمه بختیارزاده، دکتر اصغر قاسمی

(۱) مرکز تحقیقات نوروزیپژوهشی، گروه نوروزیپژوهشی، دانشکده پزشکی، دانشگاه علوم پزشکی، شهید بهشتی، تهران، ایران
(۲) مرکز تحقیقات نوروزیپژوهشی، گروه نوروزیپژوهشی، دانشگاه علوم پزشکی، شهید بهشتی، تهران، ایران
(۳) مرکز تحقیقات نوروزیپژوهشی، گروه نوروزیپژوهشی، دانشگاه علوم پزشکی، شهید بهشتی، تهران، ایران
پیامک نویسندگان مسئول: تهران، ولی‌عمیر، خیابان میناب، خیابان پروران، پلاک ۲۲، مرکز تحقیقات نوروزیپژوهشی، گروه نوروزیپژوهشی، دانشگاه علوم پزشکی، شهید بهشتی، تهران، ایران
ام: Ghasemi@endocrine.ac.ir

چکیده

مقدمه: دیابت یکی از شاخص‌ترین بیماری‌های مزمن در جهان به شمار می‌رود. این بیماری عوارض زیادی دارد و کنترل آن بار مالی و فیزیکی‌ترین روش‌های درمان آن نیست. در این مقاله تأکید گردد. دیابت نوع ۲ شایع‌ترین نوع دیابت است که با مقاومت به انرژی و اختلال عملکرد سلول‌های بی‌شناخته‌اند. این مدل دیابت توسط مواد غذایی و حیوانات بار دارد. از بین آن‌ها، مواد غذایی که علاوه بر تغییر عملکرد سلول‌های بی‌شناخته مقاومت به انرژی نیز ایجاد کنند، مناسب‌تر هستند. در مدل دیابتی رژیم پرچرب– استرپتوتوزوسین بعنوان یک مدل دیابت نوع ۲، رزق غذایی پر چرب باعث ایجاد مقاومت به انرژی و استرپتوتوزوسین باعث تغییر نسبی سلول‌های بی‌شناخته تا می‌شود. مدل دیابتی رژیم پرچرب– استرپتوتوزوسین، مدل دیابت نوع ۲ است. در هر دو مدل دیابتی که مدل رژیم پرچرب– استرپتوتوزوسین و یزیگری‌های متابولیک دیابت نوع ۲ انسانی را دارد و می‌تواند در بررسی ترکیبی ضد دیابت مورد استفاده قرار گیرد.

واژگان کلیدی: مدل حیوانی، دیابت نوع ۲، موس صحرایی، رژیم پر چرب، استرپتوتوزوسین

دریافت مقاله: ۹۴/۳/۲۸، دریافت مقاله اصلاحی: ۹۵/۳/۱، پذیرش مقاله: ۹۵/۳/۱۷

مقدمه

قرن ۲۱ به عنوان قرنی با بالاترین میزان دیابت معرفی شده است. امروزه، ۲۸۷ میلیون نفر از دیابت رنج می‌برند و ۱۷۹ میلیون نفر نیز از بیماری خون آگاه نیستند و تخمین زده می‌شود که تا سال ۲۰۲۵ حدود ۵۹۲ میلیون نفر در دنیا مبتلا به دیابت خواهند بود. در دیابت نوع ۲ شایع‌ترین نوع دیابت است که با مقاومت به انرژی و اختلال عملکرد سلول‌های بی‌شناخته تا می‌شود. مقاومت به انرژی بیماران در مراحل ابتدا بروز بیماری ایجاد می‌شود.
subscribe to our e-newsletter!

www.jiem.sbmu.ac.ir

ii - Reed
iii - Zhang
iv - Homeostasis model assessment - insulin resistance
v - Atanasovska

i - Streptozotocin
در رابطه با تست تحلیل گلکوز، گروه‌های دیابتی گلکوز زمان صفر بالایی داشتند و بعد از تجویز گلکوز نیز این میزان افزایش یافت و ۲ ساعت بعد از تجویز نیز مهیدان با لیزر ماهنیت به صورت بیش از حد افزایش یافت. گلکوز بود که شناسایی اختلال تحلیل گلکوز است. ۱۳، ۱۴
در تست تحلیل انسولین نیز سطح گلکوز خون حیوانات سالم بعد از تزریق انسولین به سرعت کاهش یافته بود، اما در حیوانات دیابتی با آمپتیکی کش شد و یا حتی در مدت ۲۰ دقیقه کاهشی وجود نداشت. ۱۵

جدول ۱: ویژگی‌های مدل دیابتی HFD-STZ

| ویژگی‌های دیگر | شیب بودن و ویژگی‌های متابولیک دیابت نوع ۲ در انسان | آسایش و ارزان بودن الگا دیابت و مناسب برای بررسی پاتوژنیژیکی دیابت نوع ۲ | مناسب برای بررسی ترکیبات دارویی جهت درمان دیابت | پایدار بودن هیپرگلیکسی ایجاد شده | البته موارد به انسولین
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>افزایش تری کلسترول و اسیدهای</td>
<td>دوره الگا طولانی</td>
<td>اثر تاکسیک STZ روی بافت‌های دیگر مانند کلی</td>
<td>STZ روی دیابت</td>
<td>ایجاد آتروسکروتری</td>
<td></td>
</tr>
<tr>
<td>چرب آزاد خون</td>
<td>۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>چربی سطح انسولین</td>
<td>۶۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاهش سطح انسولین</td>
<td>۶۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>افزایش همگربین کلی</td>
<td>۱۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>افزایش با عدم تغییر وزن</td>
<td>۳۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ایجاد آتروسکروتری</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* HFD-STZ* رژیم پرچرب - استریتوژسین
1. Low-fat diets
2. High-fat diets
3. Very high-fat diets

moisture

kl
جدول ۲- ترکیبات و مقادير محل معدني (میلی گرم از هر ۱۰۰۰ گرم مکمل)

<table>
<thead>
<tr>
<th>کالری</th>
<th>سالنیوم</th>
<th>پتاسیم</th>
<th>پروتئین</th>
<th>روی</th>
<th>آهن</th>
<th>مس</th>
<th>فسفر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۰۰۰</td>
<td>۲۳۰۰۰۰ ۲۳۰۰۰۰ ۲۳۰۰۰۰ ۲۳۰۰۰۰</td>
<td>۱۵۰۰۰۰ ۱۵۰۰۰۰ ۱۵۰۰۰۰ ۱۵۰۰۰۰</td>
<td>۱۰۰۰۰۰ ۱۰۰۰۰۰ ۱۰۰۰۰۰ ۱۰۰۰۰۰</td>
<td>۵۰۰۰۰۰ ۵۰۰۰۰۰ ۵۰۰۰۰۰ ۵۰۰۰۰۰</td>
<td>۱۰۰۰۰۰ ۱۰۰۰۰۰ ۱۰۰۰۰۰ ۱۰۰۰۰۰</td>
<td>۱۰۰۰۰۰ ۱۰۰۰۰۰ ۱۰۰۰۰۰ ۱۰۰۰۰۰</td>
<td>۱۰۰۰۰۰ ۱۰۰۰۰۰ ۱۰۰۰۰۰ ۱۰۰۰۰۰</td>
</tr>
</tbody>
</table>

به دست آوردن دانسیته انرژی کل، درصد وزني چربی را در عدد ۹ و درصد وزني کربوهیدرات و پروتئین را در عدد ۷ ضرب می کنیم و کالری به دست آمده از هر کیلو از چربی جمع کرده و کالری کل را مقدار ۲۴۹/۳ کیلو کالری دربر ۱۰۰ گرم غذا یا ۴۹/۴ برای یک کیلو غذا است به دست می آید.

از نظر دیگر غذای مکمل دو هزار غذای ۵۰ گرم
کربوهیدرات ۱۷۵ گرم پروتئین و ۳۰ گرم چربی است. اضافه کردن این مقادیر خواهیم داشت:
گرم ۷۵۰۰۰۰۰ ۰/۲۳ کیلو
گرم ۲۰۰ ۰/۲۳ کیلو
برای یک کیلو غذا گرم ۵۰۰۰۰۰۰ ۰/۳۳ کیلو
برای یک کیلو غذا گرم ۳۰۰۰۰۰۰ ۰/۳۳ کیلو
برای یک کیلو غذا گرم ۲۰۰۰۰۰۰ ۰/۳۳ کیلو

مقدار ۳/۹ کیلو کالری از چربی باشد در ۱۰۰ گرم

یک کیلو کالری ۷۰ گرم پروتئین
یک کیلو کالری ۴۰ گرم پروتئین
یک کیلو کالری ۱۷۵ گرم کربوهیدرات

۷۵۰۰۰۰۰ ۰/۲۳ کیلو پروتئین
۳۰۰۰۰۰۰ ۰/۲۳ کیلو پروتئین
۲۰۰۰۰۰۰ ۰/۲۳ کیلو پروتئین

جدول ۳- ترکیبات و مقدار مولکول ویتامین‌های در هر ۱۰۰۰ گرم مکمل

<table>
<thead>
<tr>
<th>ویتامین</th>
<th>واحد بین المللی</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1580000</td>
</tr>
<tr>
<td>D</td>
<td>800000</td>
</tr>
<tr>
<td>E</td>
<td>150000</td>
</tr>
<tr>
<td>K3</td>
<td>500000</td>
</tr>
<tr>
<td>B1</td>
<td>280000</td>
</tr>
<tr>
<td>B2</td>
<td>200000</td>
</tr>
<tr>
<td>B3</td>
<td>200000</td>
</tr>
<tr>
<td>B4</td>
<td>200000</td>
</tr>
<tr>
<td>B5</td>
<td>120000</td>
</tr>
<tr>
<td>B6</td>
<td>120000</td>
</tr>
<tr>
<td>B12</td>
<td>200000</td>
</tr>
<tr>
<td>H3</td>
<td>120000</td>
</tr>
<tr>
<td>کربنات کلسیم</td>
<td>2750000</td>
</tr>
<tr>
<td>آنتی اکسیدان</td>
<td>500000</td>
</tr>
</tbody>
</table>

یافته و میزان HOMA-IR به ۱/۱۹ رسید (نتایج هنوز چاب در آزمایشگاه ما، دو هفته بعد از شروع رژیم پرچرب سطح انسولین جهت حفظ سطح بدن گلکز، حدود ۱۰۲ درصد نسبت به سطح پایه افزایش یافته بود و میزان HOMA-IR نیز از ۱/۴۸ به ۴/۲۱ رسیده بود که یک افزایش ۲/۷ برابری را نشان می‌دهد. علی‌رغم این که سطح گلکز خون به میزان معنی‌داری افزایش نیافت و رهایی آنتی اکسیدان، سطح انسولین کاهش و سطح گلکز افزایش گردید.

جدول ۴- درصد وزنی و درصد کالری رژیم معنوی و رژیم پرچرب

<table>
<thead>
<tr>
<th>ترکیبات</th>
<th>درصد وزنی رژیم معنوی</th>
<th>درصد وزنی رژیم پرچرب</th>
<th>درصد کالری رژیم معنوی</th>
<th>درصد کالری رژیم پرچرب</th>
</tr>
</thead>
<tbody>
<tr>
<td>کربوهیدرات</td>
<td>۵۷</td>
<td>۴۷</td>
<td>۵۷</td>
<td>۴۷</td>
</tr>
<tr>
<td>جبی</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>پروتئین</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
<td>۲۱/۷</td>
</tr>
<tr>
<td>مکمل و ویتامین و</td>
<td>۴/۹</td>
<td>۴/۹</td>
<td>۴/۹</td>
<td>۴/۹</td>
</tr>
<tr>
<td>معدن</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>قیف</td>
<td>۶/۸</td>
<td>۶/۸</td>
<td>۶/۸</td>
<td>۶/۸</td>
</tr>
<tr>
<td>رطوبت</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
</tr>
<tr>
<td>گیاه</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>جمع</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در القای مدل دیابتی STZ دوز ها متفاوت HFD-STZ در القای مدل دیابتی STZ دوز ها متفاوت و مورد مطالعه قرار گرفتهاند و منشأش شده است که دوز های بالا (بیشتر از ۵ میلی گرم به‌ایزای هر کیلو گرم وزن بدن) و متوسط (5۵-۴ میلی گرم به‌ایزای هر کیلو گرم وزن بدن) باعث القای دیابت نوع ۱ می‌شوند. در رابطه با دوز های

باید (بیشتر از ۵ میلی گرم به‌ایزای هر کیلو گرم وزن بدن) و متوسط (۴۵-۳ میلی گرم به‌ایزای هر کیلو گرم وزن بدن) باعث القای دیابت نوع ۱ می‌شوند. در رابطه با دوز های

باید (بیشتر از ۵ میلی گرم به‌ایزای هر کیلو گرم وزن بدن) و متوسط (۴۵-۳ میلی گرم به‌ایزای هر کیلو گرم وزن بدن) باعث القای دیابت نوع ۱ می‌شوند. در رابطه با دوز های
تغییرات وزن بن و دریافت غذا در مدل دیابتی STZ

مطالعات گذشته نشان داده‌اند که در مورد تغییرات وزن بن در مدل دیابتی STZ نشان داده‌اند. اما STZ-STZ میلی‌گرمی‌ها به ایزای هر کیلوگرم وزن بن برای افرادی که زمان طولانی تریپ پرچب را به صورت داخلی و تحت کنترل داشته اند از طریق داخلی STZ به صورت داخلی و تحت کنترل داشته اند مانند گام‌هایی دارد و قابل تکرار است. اما تغییرات داخل وریدی سخت است و نیاز به مهارت دارد.

STZ

میلی‌گرم از سریلیت شد. با این که، اکثر مطالعات از مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن استفاده کردند. اما مطالعات STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن ارزش داشته‌اند که حتی دوز ۲۰ میلی‌گرمی به ایزای هر کیلوگرم وزن بن، اثراتی در این مدل داشت. در این مدل، باید وزن بن را به صورت داخلی و تحت کنترل داشته اند.

دیابت نوع ۲ را با دیابت دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی دیابت نوع ۲ را در دو صورت چهار مدل STZ-STZ میلی‌گرمی به ایزای هر کیلوگرم وزن بن افرادی که بیماری‌های دیابتی D

- Srinivasan
- Wang
جدول ۶ - خصوصیات مطالعات انجام شده با مدل دیپاتی

<table>
<thead>
<tr>
<th>تلاش محیط</th>
<th>وزن بدن (گرم)</th>
<th>لایه سیال</th>
<th>متضاعف ریزوپریپربی (گرم)</th>
<th>متضاعف بیماری STZ (گرم)</th>
<th>سیر مانندی</th>
<th>امزیک</th>
<th>نتایج</th>
<th>وسیع</th>
<th>زمان اندازه گیری</th>
<th>محصول گلکوز خون (میلی‌گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰-۶۵</td>
<td>۵۰</td>
<td>۳</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>۶۵-۷۰</td>
<td>۵۰</td>
<td>۳</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>۷۰-۷۵</td>
<td>۵۰</td>
<td>۳</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>۷۵-۸۰</td>
<td>۵۰</td>
<td>۳</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>بالای ۸۰</td>
<td>۵۰</td>
<td>۳</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
</tbody>
</table>

HFD-STZ: رژیم پرپریپربی - استروپریپربی. ۱ (کاس): ۰ (نوعی). (MAPK) (PKB) Akt/protein kinase B مسیر (MAPK) (PKB) Akt/protein kinase B مسیر می‌باشد. FAS در رژیم HFD-STZ، انسولین در مدل دیپاتی انسولین در کنترل هوموستات گلکوز، ساعت و دنی در مدل دیپاتی انسولین در کنترل هوموستات گلکوز، ساعت و دنی در مدل دیپاتی انسولین در کنترل هوموستات گلکوز، ساعت و دنی در مدل دیپاتی FAS و دیپتین. و رشد و تمایز سلول نقش دارد. می‌باشد. می‌باشد. می‌باشد. می‌باشد. می‌باشد.
همگامی که انسولین به‌گیرندگان منطقی می‌شود، از طریق فسفولیپاسیون سویسبردار یکسیسیل کوادی-۱۶۰ (IRS-1) از جمله مکانیزم‌های فسفولیپاسیون پایه‌ای گلوکز به نتیجه می‌رسد. کنان (PI3K) می‌شود و P13K تشکیل پایه‌ای لیپیدی فسفاتیدینوزیتلتریفسفات (IP3) را کاتالیز می‌کند و سپس ترکیب IRS-۱ وAkt/PKB سبب می‌شود. این پروتئین‌ها از نظر مسیر سیگنال‌های آتک، فسفاتیدینوزیتلتریفسفات (IP3) و رسوب‌سازی هسته‌ای آتک، بحث و بررسی کننده‌ها نشان‌دهنده‌ای بستگی بوده، باعث افزایش آتک ریبوبی‌وی و فعالیت آتک/PKB. این پروتئین‌ها به‌طور مستقل از فعالیت IRS-۱ وAkt/PKB به‌طور همیشه با کاهش سطح داخل سلولی این پروتئین‌ها وفته‌هایی را در آنها برجوی آشنا می‌کنند. همچنین، این پروتئین‌ها به‌طور مستقل از فعالیت IRS-۱ وAkt/PKB به‌طور همیشه با کاهش سطح داخل سلولی این پروتئین‌ها وفته‌هایی را در آنها برجوی آشنا می‌کنند.

در مورد سیگنال‌های IRS-۱ وAkt/PKB، این سیگنال‌ها به‌طور مستقل از فعالیت IRS-۱ وAkt/PKB به‌طور همیشه با کاهش سطح داخل سلولی این پروتئین‌ها وفته‌هایی را در آنها برجوی آشنا می‌کنند. همچنین، این پروتئین‌ها به‌طور مستقل از فعالیت IRS-۱ وAkt/PKB به‌طور همیشه با کاهش سطح داخل سلولی این پروتئین‌ها وفته‌هایی را در آنها برجوی آشنا می‌کنند.

همچنین، این پروتئین‌ها به‌طور مستقل از فعالیت IRS-۱ وAkt/PKB به‌طور همیشه با کاهش سطح داخل سلولی این پروتئین‌ها وفته‌هایی را در آنها برجوی آشنا می‌کنند. همچنین، این پروتئین‌ها به‌طور مستقل از فعالیت IRS-۱ وAkt/PKB به‌طور همیشه با کاهش سطح داخل سلولی این پروتئین‌ها وفته‌هایی را در آنها برجوی آشنا می‌کنند.
افرازیش وزن، افزایش ماتریکس مزائیال و ضخامت غشاء پایه، گلومولرولی، گلومولاروسکلون، هیالین آرتواسکلون و هايپرئولی گلومولر می‌شود.

 Mango: STZ گلوکزیت‌ها، همبودریزی و علایم نشان‌دهنده خستگی بالینی افراد و رفع استRESUS-1/2 گلوکریزی و شکم‌داری در افراد بی‌مرگی بیماران از کنترل علایم غیرمحلی می‌گردد.

 HFD-STZ تغییرات سایر یافته‌های در مدل دیابتی القای دیابت به واسطه رژیم پرچرب و STZ می‌تواند روز به روز باعث تغییرات در سیستم‌های اسکایینگ انسولین و انرژی پرچرب در آن می‌شود.

 شکل 1- مسیر سیگنال‌های انسولین و انرژی پرچرب در آن.

 Akt/PKB، Akt/protein kinase B; ERK، Extracellular signal-regulated kinase; GRB2، Growth factor receptor-bound protein 2; HFD، high fat diet; IRS-1/2، Insulin receptor substrates-1/2; JNKK، c-Jun N-terminal kinase; JNKK، c-Jun N-terminal kinase kinase; MEK، Mitogen-activated/extracellular signal–regulated kinase; MEKK-1، Mitogen-activated/extracellular signal–regulated kinase kinase 1; PLC، Phospholipase Cγ; PKC، Protein kinase C; PI3K، Phosphatidylinositol-3 kinase.

 در آنورت باعث ایجاد ضایعات آپوتوسکلنریتیک و ریگوژیپاسکلنریتیک و خاصیت ایمنی‌سازی تبدیل و تجمع پلاکتیک تکلشی و تعادل آی‌گ‌جزیره و ریزوله یا کاسپاز ۳ فعال در هیپکوپوم آنها افزایش و میکری کنترل کاهش می‌یابد. در مغز به نمایان دیابتی آسیب بیشتری را نشان می‌دهد و میزان سلول‌های با کاسپاز ۳ فعال در هیپکوپوم آنها افزایش و میکری کنترل کاهش می‌یابد.

 در کبد تومور به افزایش اندوز و وزن شده و میزان آزیم‌های آسیب‌های آمیوتراکسیفیزار. آلاین–آمیوتراکسیفیزار. فعالیت گلیکوزن فسفریلاز و گلیکوزن فسفاتاز افزایش می‌یابد. ولی میزان گلیکوزن ۶-۸ فعالیت آنزیم‌های گلیکوزیلاتان و سوختن‌ها دهیدروژن‌کاهش می‌یابد. همچنین، افزایش چگالی
هجیرنی میتوکندری ماتور و نکروز سلول‌های کبدی با
علت افزایش سوراخ چربی ماده‌های میشود. اسیدهای چرب
یک هیموگلوبین افزایش آمبولیا چرب و
تقدیم‌سری دهنده به انسپانس تحریک شده، گلوکز
را بستری می‌کند. به علته، تهیه آنزیم‌های آتی
اکسیدانی مانند کاقتان، سرپرکسیدسپرتنز و گلکوژن
رودکاز کاهش یافته و منجر به آسیب‌های اکسیدانی در
بافت‌های میشود.

هجیرنی، کراتین خون، نیتروزید اورده خون،
پروتئین ادرار، یک پروپیل‌بین اکسبید، اکسید نتیلکریک،
ایتینولکریک، مومول‌بین‌گلکوزیل و -
در حیوانات دیابتی با پرمیکروبی افزایش می‌باشد.

تغییرات پروپانیل لیدهای در مدل دیابتی-

HFD-STZ در مدل دیابتی-

علاوه بر گل، همچنین در سلول‌های
چربی نیز مختل می‌شود که مانند افت کاهش است که در
نوع 2 انسان نیز مشاهده می‌شود. می‌توانیم عامل خطری
برای بیماری‌های قلبی عروقی باشد." مطالعات صورت گرفت
با استفاده از این تیتول، تغییرات را در میزان سطح خونی
کلسسترول، تری‌گلیسرید، اسید چرب آزاد، لپتوپروتئین
با چگالی پایین و چکلسترول بالا ثابت است. در
یک مطالعه، تغییرات STZ تهیه شده و بعد پرمیکروبی
کلسسترول، تری‌گلیسرید، اسید چرب آزاد را تغییر
نداشت. در حالی که رژیم پرمیکروبی باعث افزایش این فاکتورها
شد و تغییرات STZ در این حیوانات سطح افزایش یافتند
کلسسترول، تری‌گلیسرید و اسید چرب آزاد را تغییر کرد.

اثر مطالعات صورت گرفته با مدل دیابتی-

ازایش سطح خونی کلسسترول،
تستری گلیسرید و اسید چرب آزاد را تشدید کرد.

اثر مطالعات صورت گرفته با مدل دیابتی-

انزایشی سطح خونی کلسسترول،
تستری گلیسرید و اسید چرب آزاد را تشدید کرد.

اثر مطالعات صورت گرفته با مدل دیابتی-

انزایشی سطح خونی کلسسترول،
تستری گلیسرید و اسید چرب آزاد را تشدید کرد.
References

21. Lu HE, Jian CH, Chen SF, Chen TM, Lee ST, Chang CS, et al. Hypoglycaemic effects of fermented mycelium...

A Review of High Fat Diet-Streptozotocin Model for Induction of Type 2 Diabetes in Rat

Gheibi S¹, Bakhtiarzadeh F², Ghasemi A²

¹Neurophysiology Research Center & Department of Physiology, Faculty of Medicine, & ²Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran

e-mail: Ghasemi@endocrine.ac.ir

Received: 20/12/2015 Accepted: 26/04/2016

Abstract

Introduction: Diabetes, one of the most common chronic diseases worldwide, has many complications and current treatments impose a high cost on health system necessitating that newer treatments be investigated. Type 2 diabetes mellitus is the most common form of diabetes, characterized by insulin resistance and dysfunction of pancreatic beta cells. Considering the restrictions of human studies, animal models of diabetes are appropriate tools for researches. Rodents are the first choice for inducing diabetes mellitus due to their short generation time and economic considerations. There are several animal models of type 2 diabetes, of which, those with both beta cell impairment and insulin resistance are preferable. In the high fat diet-streptozotocin model, as a model of type 2 diabetes, high fat diet induces insulin resistance and streptozotocin causes partial beta cell destruction. The high fat diet-streptozotocin model is a cost-effective and appropriate model for studying type 2 diabetes. In conclusion high fat diet-streptozotocin model has metabolic characteristics similar to those of human type 2 diabetes and can be used for investigating the effects of more recent antidiabetic medications available for the condition.

Keywords: Animal model, Type 2 diabetes, Rat, High fat diet, Streptozotocin