ارزیابی تأثیر عوامل تشخیصی و درمانی بر رشد کودکان مبتلا به کمکاری مادرزادی تیروئید: یک مطالعه طولی آینده‌گر

چکیده
مقدمه: تاکنون در ایران مطالعاتی جهت بررسی عوامل موتور بر رشد کودکان مبتلا به کمکاری مادرزادی تیروئید انجام نگرفته است. با توجه به شوک بالای این بیماری در ایران به خصوص شهروندان اجتماعی مطالعاتی انجام نماید. بررسی عوامل تشخیصی و درمانی مرتبط با رشد کودکان مبتلا به کمکاری مادرزادی تیروئید است. مواد و روش‌ها: از این مطالعه همگونی‌گر 300 کودک ملی (سالهای 1381 تا 1388) که توسط به بهره‌گیری نوزادان، مبتلا به کمکاری مادرزادی تیروئید تشخیص داده شده و به دست آمده به طور میانگین درمان در دو گروه به روش‌های متداول درمانی استفاده گردیده. مطالعه شدند. متغیرهای قد، وزن و دور سر این کودکان در طول مدت ییک سال در فضای مشترک تهیه شدند.

نتیجه‌گیری: این تحقیق نشان می‌دهد تجویز LT4 در زمان و دور مناسب ممکن است به بهبود رشد این کودکان مبتلا به کمکاری مادرزادی تیروئید کمک کند. این دستگاه باید به‌صورت منظم تکنولوژی‌های جدید به بهبود رشد این کودکان مبتلا به کمکاری مادرزادی تیروئید کمک کند.
بیشتر نوزادان مبتلا به CH در هنگام تولد دارای وضعیت طبیعی هستند و همیشه ایمن از بیماری را در خود نشان دهند؛ این در حالی است که مطالعاتی که در زمینه بیکری این بیماران انجام گرفته، نتایج متفاوتی و نتایج متفاوتی با یکدیگر به عنوان یک مطالعه مقدماتی آغاز شد. به دلیل شیوع بالای این اختلال در این منطقه، این بیماران به عنوان یک بیماری غیرقابل در سراسر ایران اقتشاب شده و تا به حال نیز ادامه یافته است.

مطالعات مختلفی در زمینه بیماری و وضعیت شدید کودکان مبتلا به CH و عوامل متغیر با آن انجام شده است، اما تأثیر حاصل از آنها بسیار متفاوت و بهترین راه بوده است. برخی نشان داده که این کودکان دارای تنگه تغذیه رشد هستند. اما درمان به نوعی زندگی و نه به عنوان یک مکمل درمانی محسوس می‌شود. این منطقه، برخی از مطالعاتی که به‌طور گسترده‌ای انجام شده است. شناسایی و شناسایی هر نوعی کودکان دارای تأثیر در بیماران مبتلا به CH کاهش در濾CH و ممکن است در وضعیت شدید کودکان مبتلا به CH بکدارد. با توجه به اینکه در توصیه نمود که مورد همین مطلب است. و همکاران و پژوهش‌بروک ۷۸ نشان می‌دهند که استفاده از دوز اولیه و

ی - Thyroid Stimulating Hormone
ii - Grant
iii - Heyerdahl
iv - Brook

v - Intrauterine Growth Retardation (IUGR)
(iv-T3 Resin Uptake (T3RU))
(v- Free T4 Index (FTI))

iv- Thyroxine
ii-Radioimmunoassay (RIA)
iii-Immunoradiometric Assay (IRMA)
تجزیه و تحلیل آماری

در مطالعه طولی، می‌آموزدی در طی زمان به طور مکرر مورد سنجش و انتخابگیری قرار می‌گیرد. هدف اصلی اکثر این مطالعات، مشخص کردن تغییرات متغیر پاسخ در طی زمان و از ارایبی عواملی است که بر این تغییرات تأثیر می‌کنند. همانگونه ارایبی این تاثیرات، باید تغییرات درون فردی ناشی از انتخابگیری‌های مکرر می‌آموزدی تحت ملاحظه گردد. از سوی دیگر، پیش‌بینی‌های ریاضی برای داده‌های طولی، به مثابه عوامل اصلی بررسی‌های ارایبی می‌باشد. به طور کلی، این مقاله به بازیابی داده‌های طولی و تحلیل آماری آن‌ها می‌پردازد.
جدول ۱- برآورد واقعی و گرگیون چندکی برای این (سانتی‌متر) بیماران مبتلا به کم‌کاری مادرزادی تیروئید

<table>
<thead>
<tr>
<th>متغیرهای پیش به</th>
<th>۷۷</th>
<th>۹۰</th>
<th>۷۵</th>
<th>۵۰</th>
<th>۲۵</th>
<th>۱۰</th>
<th>۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-value پرآورنده</td>
<td>۷۷</td>
<td>۹۰</td>
<td>۷۵</td>
<td>۵۰</td>
<td>۲۵</td>
<td>۱۰</td>
<td>۳</td>
</tr>
<tr>
<td>t-value پرآورنده</td>
<td>۷۷</td>
<td>۹۰</td>
<td>۷۵</td>
<td>۵۰</td>
<td>۲۵</td>
<td>۱۰</td>
<td>۳</td>
</tr>
<tr>
<td>t-value پرآورنده</td>
<td>۷۷</td>
<td>۹۰</td>
<td>۷۵</td>
<td>۵۰</td>
<td>۲۵</td>
<td>۱۰</td>
<td>۳</td>
</tr>
<tr>
<td>t-value پرآورنده</td>
<td>۷۷</td>
<td>۹۰</td>
<td>۷۵</td>
<td>۵۰</td>
<td>۲۵</td>
<td>۱۰</td>
<td>۳</td>
</tr>
<tr>
<td>t-value پرآورنده</td>
<td>۷۷</td>
<td>۹۰</td>
<td>۷۵</td>
<td>۵۰</td>
<td>۲۵</td>
<td>۱۰</td>
<td>۳</td>
</tr>
<tr>
<td>t-value پرآورنده</td>
<td>۷۷</td>
<td>۹۰</td>
<td>۷۵</td>
<td>۵۰</td>
<td>۲۵</td>
<td>۱۰</td>
<td>۳</td>
</tr>
<tr>
<td>t-value پرآورنده</td>
<td>۷۷</td>
<td>۹۰</td>
<td>۷۵</td>
<td>۵۰</td>
<td>۲۵</td>
<td>۱۰</td>
<td>۳</td>
</tr>
<tr>
<td>t-value پرآورنده</td>
<td>۷۷</td>
<td>۹۰</td>
<td>۷۵</td>
<td>۵۰</td>
<td>۲۵</td>
<td>۱۰</td>
<td>۳</td>
</tr>
</tbody>
</table>

منبع: دفتر مهندسی پزشکی و پیش‌بینی درمان مبتلا به کم‌کاری مادرزادی تیروئید.
جدول 2- برآورد‌های رگرسیون چندکی برای وزن (کیلوگرم) بیماران مبتلا به کمباری مادرزادی تیروئید

<table>
<thead>
<tr>
<th></th>
<th>سنتی</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t-value</td>
<td>براورد</td>
<td>t-value</td>
<td>براورد</td>
<td>t-value</td>
<td>براورد</td>
<td>t-value</td>
</tr>
<tr>
<td>سن</td>
<td>92/08</td>
<td>77/42</td>
<td>72/45</td>
<td>67/15</td>
<td>52/17</td>
<td>24/25</td>
<td>24/75</td>
</tr>
<tr>
<td>وزن پاک</td>
<td>1/78</td>
<td>1/77</td>
<td>1/76</td>
<td>1/75</td>
<td>1/74</td>
<td>1/73</td>
<td>1/72</td>
</tr>
<tr>
<td>فلخت 74 (میکروگرم در صد میلی لیتر)</td>
<td>0/02</td>
<td>0/01</td>
<td>0/00</td>
<td>0/09</td>
<td>0/08</td>
<td>0/07</td>
<td>0/06</td>
</tr>
<tr>
<td>پس از آغاز درمان</td>
<td>1/61</td>
<td>1/62</td>
<td>1/63</td>
<td>1/64</td>
<td>1/65</td>
<td>1/66</td>
<td>1/67</td>
</tr>
<tr>
<td>TSH</td>
<td>1/35</td>
<td>1/36</td>
<td>1/37</td>
<td>1/38</td>
<td>1/39</td>
<td>1/40</td>
<td>1/41</td>
</tr>
<tr>
<td>(بیلی واقع شده در لیتر)</td>
<td>1/35</td>
<td>1/36</td>
<td>1/37</td>
<td>1/38</td>
<td>1/39</td>
<td>1/40</td>
<td>1/41</td>
</tr>
<tr>
<td>فلخت 74 (میکروگرم در صد میلی لیتر)</td>
<td>1/17</td>
<td>1/18</td>
<td>1/19</td>
<td>1/20</td>
<td>1/21</td>
<td>1/22</td>
<td>1/23</td>
</tr>
<tr>
<td>پس از آغاز درمان</td>
<td>1/57</td>
<td>1/58</td>
<td>1/59</td>
<td>1/60</td>
<td>1/61</td>
<td>1/62</td>
<td>1/63</td>
</tr>
<tr>
<td>TSH</td>
<td>1/35</td>
<td>1/36</td>
<td>1/37</td>
<td>1/38</td>
<td>1/39</td>
<td>1/40</td>
<td>1/41</td>
</tr>
<tr>
<td>(بیلی واقع شده در لیتر)</td>
<td>1/35</td>
<td>1/36</td>
<td>1/37</td>
<td>1/38</td>
<td>1/39</td>
<td>1/40</td>
<td>1/41</td>
</tr>
<tr>
<td>سن شروع درمان</td>
<td>1/35</td>
<td>1/36</td>
<td>1/37</td>
<td>1/38</td>
<td>1/39</td>
<td>1/40</td>
<td>1/41</td>
</tr>
<tr>
<td>سن مرگ شدن</td>
<td>1/35</td>
<td>1/36</td>
<td>1/37</td>
<td>1/38</td>
<td>1/39</td>
<td>1/40</td>
<td>1/41</td>
</tr>
<tr>
<td>سن شروع درمان</td>
<td>1/35</td>
<td>1/36</td>
<td>1/37</td>
<td>1/38</td>
<td>1/39</td>
<td>1/40</td>
<td>1/41</td>
</tr>
</tbody>
</table>

نقطه مثبت برای | 0.05 | 0.04 | 0.03 | 0.02 | 0.01 | 0.00 | 0.09 | 0.08 | 0.07 | 0.06 | 0.05 |

P-Value

*مشخص شده

**تمام مبادرت ها نشان می‌دهد که برای افرادی از آزمون برای ارزیابی معنی‌داری ضرایب هستند که منابع مربوط به

می‌باشند. این نتایج نشان می‌دهد که برای افرادی از آزمون برای ارزیابی معنی‌داری ضرایب هستند که منابع مربوط به

کنتر از 10 مبای برای (ملی در لیتر) بررسی می‌گردد، به عنوان گذاشته‌شده.

Downloaded from jem.sbnu.ac.ir at 20:07 +0330 on Sunday October 13th 2019
جدول 3- برآورددهای رگرسیون چندکی برای محیط دور سر (سانتی‌متر) بیماران مبتلا به کمکاری مادرزادی تیروفیید

متغیرهای پیش بین

<table>
<thead>
<tr>
<th>متغیرهای پیش بین</th>
<th>t-value برابر با</th>
</tr>
</thead>
<tbody>
<tr>
<td>سن</td>
<td>2.7</td>
<td>2.8</td>
<td>2.5</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>محیط دور سر پایه</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>جنسیت (دختر:0)</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>ظفت T4 (میکروگرم در سد میلی‌لتر)</td>
<td>3.1</td>
<td>3.2</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>ظفت TSH (میلی واحد بین‌المللی در لیتر) در زمان تشخیص بیماری</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>ظفت TSH (میلی واحد بین‌المللی در لیتر) در زمان تشخیص بیماری</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>ظفت TSH (میلی واحد بین‌المللی در لیتر) از آغاز درمان</td>
<td>3.1</td>
<td>3.2</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>ظفت TSH (میلی واحد بین‌المللی در لیتر) از آغاز درمان</td>
<td>3.1</td>
<td>3.2</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>سن شروع درمان (سال)</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>دور آغاز درمان</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>دور آغاز درمان</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>سن نمرال شدن T4</td>
<td>3.2</td>
<td>3.3</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>سن نمرال شدن TSH</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>نوع اختلال تیروفیید (اگرها)</td>
<td>3.1</td>
<td>3.2</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
</tbody>
</table>

سطح معنی‌داری 1 درصد و 5 درصد به ترتیب با نشان‌های *و ** مشخص شده. P-Value یا تخته‌شکل در پایین به‌طور مثالی با چکنام‌های چپ از درمان، سطح TSH نمرال شود و با TSH نمرال شدن T4 نمرال شد.
ضرایب متغیر سن آغاز درمان برای تمامی صدقکهای توزیع وقوع در پی این بیماران به سمت میکروبیوم تراکم در اثر کامپین کسب می‌شود. این بیماران که سن آن‌ها در زمان شروع درمان کمتر از مابین 30 روز بود، به طور معمول در بخش‌های زیرین آن‌ها بیشتر از 20 روز (p<0.05). همچنین ضرایب این متغیر به تمام صدقکهای توزیع محیطی سر بیماران، منفی و اثرات معنی‌داری نداشتند.

ساپر متغیرهای کمی معنی‌داری برای توزیع قد بیماران، نوع اختلال تیروئیدی و سن نژادی بیماران T4 بودند (جدول 1). نوع اختلال تیروئیدی، فقط در صدقکهای 10 و 15 اثرات منفی و معنی‌دار بر قد بیماران داشت (p<0.01). به عبارت دیگر، ضرایب تفاوت‌های نسبتی بین کاوشگران T4 تغییر کردند. این باعث ایجاد دیگر تفاوت‌های انتخابی بین بیماران می‌شود.

ضرایب سن نژادی بیماران T4 برای تمامی صدقکهای توزیع قد بیماران، منفی بودند. با این حال، اثرات معنی‌داری این متغیر وجود داشت. به عبارت دیگر، سن نژادی یکی دیگر اثرات معنی‌داری حاوی گردید. انتقال صدکه‌های وقوع در پی این بیماران داشت (سپاس از برترین‌های تایوانی، آنتالیا، ترکیه ترکیه دایمی بودند).

بر اساس توزیع قد بیماران مشخص شد که ضرایب متغیر سن نژادی T4 در زمان تحقیص معنی‌داری بوده و صدقکهای T2 و سپس از آغاز درمان، به سمت میکروبیوم تراکم در اثر کامپین کسب می‌شود. این بیماران که سن آن‌ها در زمان شروع درمان کمتر از مابین 30 روز بودند، به طور معمول در بخش‌های زیرین آن‌ها بیشتر از 20 روز (p<0.05) همچنین ضرایب این متغیر به تمامی صدقکهای توزیع محیطی سر بیماران، منفی و اثرات معنی‌داری نداشتند.

ضرایب متغیر سن آغاز درمان برای تمامی صدقکهای T4 و قد بیماران به سمت میکروبیوم تراکم در اثر کامپین کسب می‌شود. این بیماران که سن آن‌ها در زمان شروع درمان کمتر از مابین 30 روز بودند، به طور معمول در بخش‌های زیرین آن‌ها بیشتر از 20 روز (p<0.05). به عبارت دیگر، ضرایب تفاوت‌های نسبتی بین کاوشگران T4 تغییر کردند. این باعث ایجاد دیگر تفاوت‌های انتخابی بین بیماران می‌شود. به عبارت دیگر، سن نژادی یکی دیگر اثرات معنی‌داری حاوی گردید. این باعث ایجاد دیگر تفاوت‌های انتخابی بین بیماران می‌شود.

بر اساس توزیع قد بیماران مشخص شد که ضرایب متغیر سن نژادی T4 در زمان تحقیص معنی‌داری بوده و صدقکهای T2 و سپس از آغاز درمان، به سمت میکروبیوم تراکم در اثر کامپین کسب می‌شود. این بیماران که سن آن‌ها در زمان شروع درمان کمتر از مابین 30 روز بودند، به طور معمول در بخش‌های زیرین آن‌ها بیشتر از 20 روز (p<0.05) همچنین ضرایب این متغیر به تمامی صدقکهای توزیع محیطی سر بیماران، منفی و اثرات معنی‌داری نداشتند.

ضرایب متغیر سن نژادی بیماران T4 برای تمامی صدقکهای T4 و قد بیماران به سمت میکروبیوم تراکم در اثر کامپین کسب می‌شود. این بیماران که سن آن‌ها در زمان شروع درمان کمتر از مابین 30 روز بودند، به طور معمول در بخش‌های زیرین آن‌ها بیشتر از 20 روز (p<0.05) همچنین ضرایب این متغیر به تمامی صدقکهای توزیع محیطی سر بیماران، منفی و اثرات معنی‌داری نداشتند.
در این مطالعه، اثر فاکتورهای قربانی و درمانی بر رشد بیماران مبتلا به کم کاری مادرزادی تیروئید که در طی غربالگری شناسایی و تحت درمان گرفته بودند، با استفاده از مدل رگرسیون چندین برای داده‌های طولی مورد بررسی قرار گرفت. استفاده از این روش آماری پیشمرگه برای داده‌های طولی مطلق، قابل را بر دستیابی به تصور جامعی از اثر پیشبردی مختلف قد، وزن و دور سر بیماران مبتلا به CH سرمی TSH در زمان تشخیص بیماری قرار داشتند، این سرمی TSH در زمان تشخیص بیماری قرار داشتند، این تغییر معنی‌دار بود. این نتایج مربوط به رشد بیماران مبتلا به کم کاری مادرزادی تیروئید نشان داد که با رشد و نسبتاً به شدت در زمان تغییر می‌کند و می‌تواند مورد بررسی قرار گیرد. این نتایج منجر به داشتن تحقیق از تأثیر این روش آماری و مدل‌سازی است. ۱۸۶، بررسی رشد و نسبتاً به شدت در زمان تغییر می‌کند و می‌تواند مورد بررسی قرار گیرد. این نتایج منجر به داشتن تحقیق از تأثیر این روش آماری و مدل‌سازی

در مقایسه با گزارش‌های دیگر، رشد ناسازدهان، اما به CH

واستیه درمان یافته‌های آن‌ها از این انتخاب رشد در طی

دوران بیماران گیاهی و از انتزاع بدن در طی انتقال

نتیجه از این انتخاب رشد در طی دوران بیماری تیروئید، که در طی

غربالگری شناسایی و تحت درمان گرفته بودند، با استفاده از مدل رگرسیون چندین برای داده‌های طولی مورد بررسی قرار گرفت. استفاده از این روش آماری پیشمرگه برای داده‌های طولی مطلق، قابل را بر دستیابی به تصور جامعی از اثر پیشبردی مختلف قد، وزن و دور سر بیماران مبتلا به CH سرمی TSH در زمان تشخیص بیماری قرار داشتند، این سرمی TSH در زمان تشخیص بیماری قرار داشتند، این تغییر معنی‌دار بود. این نتایج مربوط به رشد بیماران مبتلا به کم کاری مادرزادی تیروئید نشان داد که با رشد و نسبتاً به شدت در زمان تغییر می‌کند و می‌تواند مورد بررسی قرار گیرد. این نتایج منجر به داشتن تحقیق از تأثیر این روش آماری و مدل‌سازی است. ۱۸۶، بررسی رشد و نسبتاً به شدت در زمان تغییر می‌کند و می‌تواند مورد بررسی قرار گیرد. این نتایج منجر به داشتن تحقیق از تأثیر این روش آماری و مدل‌سازی

در مقایسه با گزارش‌های دیگر، رشد ناسازدهان، اما به CH

واستیه درمان یافته‌های آن‌ها از این انتخاب رشد در طی

دوران بیماران گیاهی و از انتزاع بدن در طی انتقال

نتیجه از این انتخاب رشد در طی دوران بیماری تیروئید، که در طی

غربالگری شناسایی و تحت درمان گرفته بودند، با استفاده از مدل رگرسیون چندین برای داده‌های طولی مورد بررسی قرار گرفت. استفاده از این روش آماری پیشمرگه برای داده‌های طولی مطلق، قابل را بر دستیابی به تصور جامعی از اثر پیشبردی مختلف قد، وزن و دور سر بیماران مبتلا به CH سرمی TSH در زمان تشخیص بیماری قرار داشتند، این سرمی TSH در زمان تشخیص بیماری قرار داشتند، این تغییر معنی‌دار بود. این نتایج مربوط به رشد بیماران مبتلا به کم کاری مادرزادی تیروئید نشان داد که با رشد و نسبتاً به شدت در زمان تغییر می‌کند و می‌تواند مورد بررسی قرار گیرد. این نتایج منجر به داشتن تحقیق از تأثیر این روش آماری و مدل‌سازی است. ۱۸۶، بررسی رشد و نسبتاً به شدت در زمان TSH در زمان تشخیص بیماری قرار داشتند، این سرمی TSH در زمان تشخیص بیماری قرار داشتند، این TSH در زمان تشخیص بیماری قرار داشتند، این TSH در زمان تشخیص B

i-Grant
ii-Brrok
iii-Grant
iv-Siragusa
v-Chiesa
vi-Morin

تشخیص با محیط دور سر بیماران، به جز در صدک ۲ام، ارتباط معنی‌داری داشت (۰/۱۰) می‌باشد.

بحث

در این‌جا، نتایج بررسی‌های انجام شده و نتایج محیط دور سر بیماران مبتلا به کم کاری مادرزادی تیروئید را بررسی کرده‌ایم. نتایج نشان‌دهنده که در صدک ۲ام، ارتباط معنی‌داری به دست آمده است. در این‌جا، نتایج بررسی‌های انجام شده و نتایج محیط دور سر بیماران مبتلا به کم کاری مادرزادی تیروئید را بررسی کرده‌ایم. نتایج نشان‌دهنده که در صدک ۲ام، ارتباط معنی‌داری به دست آمده است. در این‌جا، نتایج بررسی‌های انجام شده و نتایج محیط دور سر بیماران مبتلا به کم کاری مادرزادی تیروئید را بررسی کرده‌ایم. نتایج نشان‌دهنده که در صدک ۲ام، اثربار معنی‌داری به دست آمده است. در این‌جا، نتایج بررسی‌های انجام شده و نتایج محیط دور سر بیماران مبتلا به کم کاری مادرزادی تیروئید را بررسی کرده‌ایم. نتایج نشان‌دهنده که در صدک ۲ام، ارتباط معنی‌داری به دست آمده است. در این‌جا، نتایج بررسی‌های انجام شده و نتایج محیط دور سر بیماران مبتلا به کم کاری مادرزادی تیروئید را بررسی کرده‌ایم. نتایج نشان‌دهنده که در صدک ۲ام، اثربار معنی‌داری به دست آمده است.
مطالعه موری و همکارانش نشان داد که دختران در تعداد سنین بین 12 تا 18 ساله است. این اختلاف فقط در سن猜想 54 معلامه می‌باشد. همچنین، مطالعه فوق نشان داد که پسران در طول سال‌های دندان ثابت رشد از داد. در مطالعه حراسه، رشد وزن و دور سر و میزان میتال در پیтом تیره TSH به ترتیب غلظت TSH به بیماری قرار می‌دهند. این تاثیر از طرف TSH نشان داد که مقدار T4 در زمان تشخیص، معدل مستقل می‌باشد. در همچنین، در این بیماران نشان داد که مقدار T4 در زمان تشخیص، ثابت به 3.1۱ در توده TSH شدن TSH از توده TSH در سال‌های اول زندگی است. در پژوهش حراسه، ارتباط معنی‌داری بین سن و سر نشان داد که در پژوهش حراسه، ارتباط معنی‌داری بین TSH در زمان تشخیص با TSH توزیع وزن و دور سر و میزان میتال به خون و دور سر و میزان میتال به خون و در مطالعه آدامز و همکارانش که با هم‌ارزیه قدر نهایی

i-Moschini
ii -Heyerdahl
iii-Adachi
iv-Final Height Standard Deviation Scores (FHSDS)
v-Salerno
vi - Darendeliler
vii -Jones
References

16. Mohammadi E, Baneshi MR, Nakhaee N. The Incidence of Congenital Hypothyroidism in Areas Covered by Ke-
man and Jiroft Universities of Medical Sciences, Iran. Journal of Health and Development 2012; 1: 47-55. [Farsi]
17. Namakin K, Sedighi E, Shirizadeh G, Zardast M. Prevalence of congenital hypothyroidism In South Kh-
orasan province (2006-2010). Journal of Birjand Uni-
versity of Medical Sciences 2012; 19: 191-9. [Farsi]
18. Akha O, Shabani M, Kowsarien M, Ghafari V, Sajadi Saravi S. Prevalence of Congenital Hypothyroidism in
Mazandaran Province, Iran, 2008. J Mazandaran Univ
19. Oordoukhanii A, Mirsaid Ghazi A, Hajpour R, Mirrnan P, Hedayati M, Azizi F. Screening for congenital hypo-
thyroidism: before and after iodine supplementation in Iran. Iranian Journl of Endocrinology and Metabolism
and dose of thyroid hormone replacement on developm
et in infants with congenital hypothyroidism. J Pediatr
21. Collaborative, N.E.C.H. Neonatal hypothyroidism scree-
ing: status of patients at 6 years of age. Journal of Pediatrics
22. Mahjoubi F, Mohammadi MM, Montazeri M, Aminii M, Hashemipour M.Mutations in the gene encoding paired
box domain (PAX8) are not a frequent cause of con-
genital hypothyroidism (CH) in Iranian patients with
thyroid dysgenesis. Arq Bras Endocrinol Metabol 2010;
23. Esmaillnasab N, Moasses ghaffari B, Akhamzadeh A. Investigation of the risk factors for congenital hypop
thyroidism in the newborns in Kurdistan Province. SJKU
2012, 17: 103-8. [Farsi]
24. Hulse JA, Grant DB, Jackson D, Clayton BE. Growth,
development and reassessment of hypothyroid infants
284: 1435-7.
25. Bain P, Toublanc JE. Adult height in congenital hypo-
thyroidism: prognostic factors and the importance of
26. Grant D. Growth in early treated congenital hypo-
27. Brook C. The effect of initial dose of thyroxine in
29. Kalantari S, Napharabadi M, Azizi F. The prevalence of
patients' hypothyroidism in Tehran mentally retarded patients'
30. Liu Y, Bottai M. Mixed-effects models for conditional
31. Koenker R. Quantile regression for longitudinal data.
JMVa 2004; 91: 74-89.
32. Lipsitz SR, Fitzmaurice GM, Molenberghs G, Zhao LP.
Quantile Regression Methods for Longitudinal Data
with Drop-outs: Application to CD4 Cell Counts of Patients
Infected with the Human Immunodeficiency Virus. Journal of the Royal Statistical Society: Series C
33. Feizi A, Hashemipour M, Hovsepian S, Amirkhani Z,
Keligshadi R, Rafaei Al Hosseini M, et al. Study of the
Efficacy of Therapeutic Interventions in Growth Normal-
ization of Children with Congenital Hypothyroidism
47. Darendeliler F, Yildirim M, Bundak R, Sükür M, Saka
N, Günsüz H. Growth of children with primary hypo-
thyroidism on treatment with respect to different ages at
34. Feizi A, Hashemipour M, Hovsepian S, Amirkhani Z,
Keligshadi R, Heydari K, et al. The Descriptive Findings of
Growth Status among Children with Congenital Hypothyroidism
Referred to Isfahan Endocrine and Metabolism Research Center. Journal of Isfahan
Medical School 2012; 29. [Farsi]
Carta M, Fazzini C, et al. Longitudinal assessment of
children with congenital hypothyroidism detected by
36. Aronson R, Ehrlich RM, Baily JD, Rovef JF. Growth in
children with congenital hypothyroidism detected by
neonatal screening. The Journal of pediatrics 1990; 116:
33-7.
37. Delvecchio M, Faienza FM, Acquafradella A, Zecchin
C, Peruzzi S, Cavallo L. Longitudinal Assessment of
Levo-Thyroxine Therapy for Congenital Hypothyroidism:
Relationship with Aetiology, Bone Maturation and
Biometrical Features. J Endocrinol Invest 1996; 19:
224-9.
38. Delvecchio M, Salerno M, Acquafradella A, Zecchin C,
Fico F, Manca F, et al. Factors predicting final height in
et early treated congenital hypothyroid patients. Clin
Endocrinol (Oxf) 2006; 65: 693-7.
39. Siragusa V, Tereghini A, Romandini GF, Vigone MC,
auxological retrospective study during the first six years
40. Chiesa A, Gruñego de Papendieck L, Keselman A,
Heinrich JJ, Bergada C. Growth follow-up in 100
children with congenital hypothyroidism before and during
41. Chiesa A, Prieto L, Mendez V, Papendieck P,Calcagn
Mde L, Gruñego-Papendieck L.Prenatal and
perinatal risk factors for congenital hypothyroidism detected through an
arbitrary neonatal screening program (1997-2010).
42. Adachi M, Asakura Y, Tachibana K. Final height and
pubertal growth in Japanese patients with congenital
hypothyroidism detected by neonatal screening. Acta
Paediatrica 2003; 92: 698-703.
43. Morin A, Guimarcy L, Apezteguia M, Ansaldi M, San-
tucci Z. Linear growth in children with congenital
hypothyroidism detected by neonatal screening and
44. Salerno M, Milterni R, Bravaccio C, Micillo M, Cap-
albo D, Di MS, et al. Effect of different starting doses of
levothyroxine on growth and intellectual outcome at
four years of age in congenital hypothyroidism.Thyroid
45. Salerno M, Micillo M, Di MS, Capdalbo D, Ferri P, Le-
terio T, et al. Longitudinal growth, sexual maturation
and final height in patients with congenital hypo-
thyroidism detected by neonatal screening. Eur J End-
46. Darendeliler F, Yildirim M, Bundak R, Sükür M, Saka
N, Günsüz H. Growth of children with primary hypo-
thyroidism on treatment with respect to different ages at

Effect of Diagnostic and Treatment Factors on Growth Development of Children with Congenital Hypothyroidism: a Prospective Longitudinal Study

Hashemipour M1, Heidari Z2, Feizi A3, Amini M4

1Department of Pediatric, Faculty of Medicine and Endocrine and Metabolism Research Center and Child Growth and Development Research Center, & 2Department of Epidemiology and Biostatistics, School of Public Health, & 3Department of Epidemiology and Biostatistics, School of Public Health, & 4Department of Internal Medicine and Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran

e-mail: awat_feiz@hlth.mui.ac.ir

Received: 16/08/2015 Accepted: 05/10/2015

Abstract

Introduction: No study has yet been conducted evaluate the factors influencing the growth of patients with congenital hypothyroidism (CH), in Iran. The high prevalence of this disease in Iran, particularly in Isfahan, made it necessary to investigate biomedical diagnostic and early treatment factors potentially affecting growth status among patients with CH. Materials and Methods: In this prospective cohort study, 760 CH neonates (born 2002-2010), diagnosed and followed up (minimum 1, maximum 5 years) during the CH screening program in Isfahan were enrolled. Height, weight and head circumferences of the patients, during follow up and in subsequent periods, were measured. Diagnostic and therapeutic factors included serum T4 and TSH concentration at diagnosis and after treatment initiation, age at onset of therapy, initial dosage of levothyroxine and age at first normalization of T4 and TSH. Quantile regression for longitudinal data was used for investigating the effects of main factors determining growth development. R free software was used for analyzing data. Results: Longitudinal growth in height and weight was significantly correlated with age at onset of therapy and initial dosage of treatment (p<0.01), while head circumference was associated only with initial dosage (P<0.05). Increase in weight and head circumference were affected by serum TSH concentration at diagnosis (p<0.05), and age of T4 normalization also had significant impact, on some of the proposed quantiles, i.e. weight (p<0.05), height (p<0.01) and head circumference (p<0.001). Conclusion: Among the factors studied, initial dosage of treatment and age at onset of therapy seem to be more important factors for growth development, suggesting that more optimal outcomes are possible through earlier treatment and appropriate levothyroxine dosage.

Keywords: Congenital Hypothyroidism, Neonatal Screening, Growth, Height, Weight, Head Circumferences, Quantile Regression for Longitudinal Data