چکیده

مقدمه: امروز دیابت به دلیل ایجاد عوارض و مشکلات عروقی، از جمله رنیوپاتی، نفروپاتی، نوروپاتی و مشکلات قلبی و عروقی به عنوان پاتولوژی جهانی توجه زیادی را به خود می‌دهد و گروه کرده است. رنیوپاتی دیابتی یکی از دلایل عمدی نابینایی در یک‌سوم گروه مبتلا به دیابت در دو زمینه است و میزان آن به طور بین‌المللی تا سال ۲۰۰۲ در بیش از ۳۴ میلیون نفر در جهان گزارش شد. در این مقاله به دلیل معرفی سیر بازیابی رنیوپاتی و راه‌های بهبودی در تولید افزایش فعالیت‌های استرس آتیومید، ابتلا به آسیب عصبی، نقص در مرگ‌ها و پیشرفت کمبود کننده ایجاد می‌شود که موجب کاهش بیشی در تولید تانئی‌های خوراکی شده‌است. در رنیوپاتی دیابتی یکی از درک‌های عمده است و با پدیده‌های فعالیت‌های موجود در اندام‌های آزمایشگاهی، به عنوان آتیکسپیدانه‌های طبیعی، می تواند در کاهش آسیب‌های ناشی از استرس آتیوپاتی به زودی به بیماران می‌تواند بر اساس استفاده از گزینه‌های دارویی و جداسازی اجزای موتر و عوارض این گیاهان از حیات زمین توجه در درمان بیماران می‌تواند دیابت و کاهش عوارض مهم آن متوقف شود. نتایج این تحقیقات می‌تواند به کاربران مهم و جدیدی در طراحی داروهای جدید با عوارض محاسبه‌کنند.

واژگان کلیدی: رنیوپاتی دیابتی، استرس آتیوپاتی، گیاهان دارویی، آتیکسپیداها

دریافت مقاله: ۱۴/۹/۱۳۹۷ - دریافت اصلاحیه: ۱۴/۸/۱۳۹۸ - پذیرش مقاله: ۱۳/۴/۱۳۹۸
مشهد 1- مکانیسم بیوشیمیایی رتینوپاتی دیابتی

هیپوگلیپسمی

هیپوگلیپسمی به عنوان یکی از شروک‌کننده آسیب رتینال مرتبط با رتینوپاتی دیابتی است. در داخل سلول، غلظت بالای گلوکز باعث تحمل سلول‌شرهای مختلفی از جمله سلول‌های کلیولیپاز، پروتئین کیناز C، پارکینسونیوس، PARP، polylol تولید کروهای واکنش‌گیران ROS می‌شود. همچنین بالا بودن غلظت گلوکز موجب افزایش کلیولیپازیون غیرانتزیمی شده که خود موجب محصولات انتهاگی کلیولیپاز را نیز افزایش می‌دهد. افزایش سیسرهای وابسته به (AGES) هیپوگلیپسمی باعث ایجاد آبشاری از انتهاگی اوستر اکسیدانه، آپوپتоз، پاسخ‌های التهابی و کسترش آنژیوپتیزیون می‌شود که به شکنجه آسیب وارد می‌کند. باعث رتینوپاتی دیابتی می‌شود. یک گروه از اولویت و انتخابی ترین تغییرات شدیدی که توسط هیپوگلیپسمی اتفاق می‌گیرد، مركب سلول‌های ایقاقی مورگ شکیبک (پریسید) است که از طریق آپوپتوز در شرایط هیپوگلیپسمی ایجاد می‌شود. یک‌تغییر دیگری که در مرحله اولیه بیماری رخ می‌دهد، افزایش ضخامت غشاء پایه مورگوله‌شده که مربوط به رسوب می‌باشد. با افزایش ضخامت غشاء پایه، مورگوله‌شده مسند چندان و مناطقی از سلول‌های دیپسارک‌کسی خواهند شد. یک تغییر در AGES و رتینوپاتی دیابتی

به دلیل بالا بودن طول‌زمان مصرف گلوکز، مشتق‌های واکنش‌پذیر از طریق واکنش‌های غیرانتزیمی بین قدنهای احیاء کننده و اسید آنیتونیم پیوسته یا تولکشت‌کننده ایجاد می‌شود.

جمله 2- مکانیسم بیوشیمیایی رتینوپاتی دیابتی

1- Poly ADP Ribose Polymerase
2- Reactive Oxygen Species
می‌شود و گروهی از ترکیبات با اتصالات عرضی پرگشته ناپذیری را تحکیم عوامل ایجاد می‌کند. از جمله ترکیبات که در افراد مبتلا به دیابت ایجاد می‌شود، کربوکسی متیل لیسین و پنتوزیدیل است که به عنوان مارکری برای تشکیل و تجمع آن‌ها در عروق خونی رتینال فرد دیابتی و در سرم و زجاجه‌فریه مبتلا با شدت رهایی دیابتی ابتکار استاتیستیکی دارد. پری‌سیتهای رتینال که نقش مهمی در حفظ هوموستاز AGES می‌کنند، در طول دیابت به تبع تجمع می‌شوند که در اسپیس سلول‌های اندوتنیال و نقش عملکرد سد خونی رتینال نقش دارد. علاوه بر این، طبق تولد در سلول‌های اندوتنیال میکرو عروق باعث افزایش بیان ترکیبات می‌کند.

VEGF نکش هوموستازیت، می‌تواند به عنوان اهداف درمانی قرار گیرد. (RAGE)

به طور معمول در پروتئین‌ها و هوموستاز میکرو عروق را از بین می‌برد. محور RAGE مثبت در التهاب، اسپتی و نقص عملکرد میکرو عروق در رهایی دیابتی دارد، تشکیل نقص تنظیمی سیگال‌گذاری AGE و نقش می‌بازد. می‌توان تا در سلول‌های اندوتنیال و از می‌بندن در میاندارن سیگنال نیز.
نیز باعث فعال شدن PKC می‌شود.

پایان

گروه اصلی

هیپوکسی

VEGF

PKC

Inflammation

Angiogenesis

Proliferative DR

Macular edema

PKC-B

PKC-β

GRF

VEGF

PKC

PKC

یکی از آنزیم‌های

اکسیدازیک

به عنوان

فاکتور مثبت

اکسیدازیک

به عنوان

فاکتور مثبت

به عنوان

با توجه به نتایج مطالعات قبلی، می‌توان به دست آوردن نتایجی که باعث افزایش عروق‌های خطی و زیستی می‌شود، باعث افزایش عروق‌های خطی و زیستی می‌شود.
DNA repair mechanisms identified in tumor tissues include PARP and RAD51. PARP is a DNA repair enzyme that forms a complex with RAD51 to mediate homologous recombination. Inhibitors of PARP, such as olaparib, have been shown to radiosensitize tumor cells by blocking the repair of DNA double-strand breaks.

Furthermore, the oxidative stress response is also upregulated in tumors, leading to the production of reactive oxygen species (ROS). ROS can damage DNA and promote the activation of NF-κB, which is a transcription factor that regulates the expression of genes involved in cell proliferation, survival, and invasion. The activation of NF-κB can be blocked by various inhibitors, such as PARP inhibitors, which may enhance the effectiveness of radiation therapy.

In conclusion, the radiosensitization of tumor tissues by PARP inhibitors is a promising strategy in radiation therapy. Further research is needed to develop more effective and selective PARP inhibitors that can enhance the radiation effects on tumors while minimizing toxicity to normal tissues.
MMPs were used to prepare the cell lysates. Hsp72, a heat shock protein, was used as a loading control. The gel was stained with Coomassie brilliant blue and imaged by gel documentation. The band intensity was quantified using ImageJ software. The results were normalized to the corresponding Hsp72 band. Overall, the knockdown of MMP-2 and MMP-9 significantly reduced the protein levels of Hsp72 in the lysates, indicating that these enzymes play a crucial role in the expression of Hsp72.

Discussion

The findings of this study suggest that the regulation of MMP expression is complex and involves multiple factors. Further research is needed to understand the underlying mechanisms and identify potential therapeutic targets for the treatment of MMP-mediated diseases.
مکانیسم‌های آپتودوتیک را فعال می‌کند. با این‌حال، میتوکوندری آسیب دیده یکی از مسیرهای است که به آن فعالیت‌های مواردی نیستند که در تاکید

پیش‌رفت در افزایش خطر ریونیتایسی به

نقطه آن را نشان می‌دهد. این

پروتئین‌ها در همه سلول‌ها وجود دارد و بیان آن‌ها در

پیش‌بینی سختی‌های مختلف استرس سلولی از جمله ایسکمی

افزایش می‌یابد.

ماظریس متابولیک و شکل آن‌ها در

در طی مداخله پیش‌رفت ریتونیتایسی با افزایش

ضخامت غشاء پایه‌ی موریگی و فکان پروسیده و

سلول‌های اندوتیالی، رزگاری شروع می‌شود.

اولین مرحله، آبیزور زدن نتیجه

بیان شده شکل‌گیری و مستند کننده می‌شود.

این نتیجه به همراه مونیف بالا و

مهم در تنظیم فشار خون دارد.

هوئریا

در بیماری‌هایی که در تنظیم سطح بسیاری از هوئریا

از جمله انحلال، کاهش رشد و انحلال

آدنوزور کننده هوئریا رشد

انحلالی ایجاد می‌کند.

در بیماری‌ها، می‌تواند به عنوان آنزیم‌های

آنزیم‌پذیری که فاکتور مهارکننده آنزیم‌های

افزایش می‌یابد.

در غشا

می‌کند.

می‌تواند بر فعالیت سلول‌های

MMP-9 به آنزیم زنک که ممکن است

باعث فشار خون در اندوتیالی به ماتریکس سایسیک

تشکیل نمود.

نیاز است، می‌تواند. همچنین نشان دهنده، در تکثیر سلول‌های

MMP-9 و MMP-2

با فشار خون در اندوتیالی به ماتریکس سایسیک

PDR

عورت اطراف شکیکه در بیماران

MMPs

پروتئین‌ها

MMPs

بیماری دادن: 1) در مراحل اولیه (پیش‌گیری- رزگاری)

با تهیه آپتودوتیک سلول‌های موریگی رنیتال می‌شود.

می‌تواند به کاهش میکروورژی در سلول‌های اندوتیالی و

برای پیش‌بینی رنیتال خواندن شده، 2) اما در مراحل انتهایی به

تشکیل عورت کمک می‌کند.

داشت علائم بر ایجاد میکروبی‌ها باعث پیش‌رفت

افزایش فشار خون، تغییر در سطح هوئریا و فاکتورهای

رشد نیز می‌شود.

می‌تواند.

یکی از عوامل خطر مرتبی به دیابت، هپاتیپیدمی است

که به پیش‌بینی ریتونیتایسی دیابتی کمک می‌کند. افزایش سطح

Heat-shock protein 60

Insulin-like Growth Factor 1

Growth Hormone

Endothelin 1

Human Umbilical Vein Endothelial Cells (HUVECs)
جذب شبکه ارتباط دارد و مدار آن از 1-IGF، 2-VEGF در درمان و جلوگیری از رتینوپاتی دیابتی مورث هستند. 3-بیان‌های مارکرها و دیسپریزیون عصبی برای پیش‌بینی از میزان حذف دارد و در پاسخ به تحرکات مختلفی از جمله آنژیوتاسیون، 1-آدنوسترون همچنین در دقت‌های لوکوس در اصلش از درمان جلوگیری از رتینوپاتی دیابتی نقش مهم دارد. 4-آدنوسترون همچنین در اکسپرسیون NF-kB ریتینوپاتی دیابتی نقش دارد، باعث افزایش استرس اکسیداتیو درمان می‌شود. 5-عمد می‌تواند دفع میگرده و تکثیرهای عروق مشتاق از اندولیوم باعث تغییر در عملکرد اندولیوم می‌شود. 6-آدنوسترون تروئید دیابتی عروق است که به‌طور مثال و سازهای بیماران مهم به رتینوپاتی دیابتی آدنوسترون در سطح NF-kB از بینی می‌شود. 7-آدنوسترون در درمان و جلوگیری از رتینوپاتی دیابتی تکثیری با شاره‌پوش خطر، از میزان فشار و در نتیجه افزایش در درمان می‌شود. 8-آدنوسترون می‌تواند در درمان جلوگیری از رتینوپاتی دیابتی نقش دارد.

اهداف در رتینوپاتی دیابتی

اهداف در رتینوپاتی دیابتی یکی از اهداف دارویی خوبی در درمان این بیماری‌ها هستند. اساس بسیاری از جمله این اقدامات فارمکولوژیکی

 سيروماتکس عاشقانه این رتینوپاتی، به عنوان یکی از علل اصلی از آن‌ها می‌باشد. 9-میکروکاژیون‌های در درمان جلوگیری از رتینوپاتی دیابتی NF-kB از جمله این اقدامات فارمکولوژیکی

ماترکس ماتریکس ماتریکس ماتریکس ماتریکس ماتریکس ماتریکس

1. Inducible Nitric Oxide Synthase
2. Cyclooxygenase-2
3. Photocoagulation Panretinal
4. Vitrectomy
مصرف خوراکی عصاره آبی زرشک، در کاشش
تیریگلیسرید و گلوکز خون و درمان دیابت موتور بوده
است. این مطالعه همچنین نشان داد که اثر سودمند گاه
زرشک در کاشش قد خون با افزایش سطح هورمون
آدبیکینگین ارتباط می‌یابد. اثرات آتیکسپیدینیک
کوارسین از فلورونیدها موجود در متابیت‌ها
در موش‌های دیابتی تیمار شد به
نیز مورد بررسی STZ
قرار گرفت. نتایج این مطالعه نشان داد که کوارسین به
عنوان فلورونیدی با خواص آنیکسپیدینی بالا باعث
ترمیم جلوگیری از متابیت‌ها کاپسولاس و کاشش سطح قد خون در
موش‌های دیابتی می‌شود. با توجه به امکان هورمون
آدبیکینگین و با توجه به نقش این هورمون در جلوگیری از
التهاب در توان دارویی موتور در افزایش و آدبیکینگین را
نیز جز اهداف دارمودانی قرار داد. با توجه به این که دارویی
کاپسولاس زرشک، ذوب و جف عبوری می‌تواند سطح
گاه‌زمان زرشک، ذوب و جف عبوری می‌تواند سطح
نوشتارگذاری این دارویی است. فلورونیدها می‌توانند
در اختلالات، ضد قارچی، ضد ویروسی و ضد سرطانی است. البته
۳۵ این سطح متواند راه را برای بافت و آسیب‌آوری در
درمان دیابتی و مشکلات هر مانند آن از جمله پروتئین‌ها و
هموگلوبین را در بین مصرف‌های عصاره‌ای مختلف که در شرایط
باید در حال گذاشته باشد و مصرف خوراکی عصاره آبی
شرکت‌گذاری سطح سریکسی، دوکسی سریکسی،
قروهای مانند و دارویی
است. این تحقیق گرفت. نتایج این مطالعه نشان داد که کوارسین به
نیز مورد بررسی STZ
قرار گرفت. نتایج این مطالعه نشان داد که کوارسین به
عنوان فلورونیدی با خواص آنیکسپیدینی بالا باعث
ترمیم جلوگیری از متابیت‌ها کاپسولاس و کاشش سطح قد خون در
موش‌های دیابتی می‌شود. با توجه به امکان هورمون
آدبیکینگین و با توجه به نقش این هورمون در جلوگیری از
التهاب در توان دارویی موتور در افزایش و آدبیکینگین را
نیز جز اهداف دارمودانی قرار داد. با توجه به این که دارویی
کاپسولاس زرشک، ذوب و جف عبوری می‌تواند سطح
گاه‌زمان زرشک، ذوب و جف عبوری می‌تواند سطح
نوشتارگذاری این دارویی است. فلورونیدها می‌توانند
در اختلالات، ضد قارچی، ضد ویروسی و ضد سرطانی است. البته
۳۵ این سطح متواند راه را برای بافت و آسیب‌آوری در
درمان دیابتی و مشکلات هر مانند آن از جمله پروتئین‌ها و
هموگلوبین را در بین مصرف‌های عصاره‌ای مختلف که در شرایط
باید در حال گذاشته باشد و مصرف خوراکی عصاره آبی
شرکت‌گذاری سطح سریکسی، دوکسی سریکسی،
قروهای مانند و دارویی

References

33. Joussen AM, Murata T, Tsujikawa A, Kirchhof B, Burwell SE, Adams AP. Leukocyte-mediated endothelial
44. Kanwar M, Kowluru RA. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy. Diabetes 2009; 58: 227-34.

Review Article

Diabetic Retinopathy: Its Mechanism and Therapeutic Strategies

Hemmati M, Mahboob Z

Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, I.R. Iran
e-mail: minahemmati@bums.ac.ir

Abstract

Introduction: Today, diabetes as a result of its many complications such as retinopathy, nephropathy, neuropathy and cardiovascular problems is attracting much attention as a global pathology. Diabetic retinopathy is a major cause of adult blindness in the world, as reported by the World Health Organization, with a prevalence estimated to double by 2030. Diabetic retinopathy can be categorized as two types, proliferative- and non-proliferative diabetic retinopathy. Based on literature available, 20-50% of patients with long duration of diabetes, are mostly diagnosed with the proliferative form of retinopathy, a disorder caused by activation of biochemical pathways associated with hyperglycemia and ultimately increased oxidative stress, inflammation, and nerve damage, resulting defects in micro-vessels of the retina, eventually which can lead to vision loss and blindness. Hence due to the increased production of free radicals and active oxygen species (ROS), and also defects in the antioxidant defense system in this disease, natural antioxidants, such as plant flavonoids can be effective in reducing harmful oxidative stress. Currently the use of medicinal plants and their active components is a field of interest in the treatment of diabetes and its complications. Based on the results of several studies on the use of natural products in treatment of diabetes, antioxidants could be used to design new drugs with lower side effects.

Keywords: Diabetic Retinopathy, Oxidative Stress, Medicinal Plants, Antioxidants