پروتوانکوژن RET

چکیده
مقدمه: سرطان تیروئید شایع‌ترین بدخیمی سیستم غدد درون‌ریز است که به عنوان نوع پایلاری، فولیکولار، مدولاری و آتیپالستیک تقسیم می‌گردد. سرطان مدولاری تیروئید (MTC) از بدخیم‌ترین انواع سرطان تیروئید است و تا ۱۰ درصد کل آتش‌گرفته‌های تیروئیدی از این نوع تشکیل می‌گیرد. سرطان مدولاری تیروئید عملاً در کسانی مشاهده می‌شود که دارای ایجاد بلایی در خوشه‌های متابولیک سلولی و کلونی‌های ژنوتپی‌های غدد درون‌ریز هستند.

گزارش کلی: آزمایش غربالیگری زنیکی، سرطان مدولاری تیروئید، RET پروتوانکوژن FMTC, MEN2A, MEN2B دریافت مقاله: ۹۶/۱۲/۱۹ پذیرش مقاله: ۹۶/۱۲/۲۵

چاپی و به دنبال آن افزایش میزان آدیبوکاًی‌ها را نیز از جمله عوامل خطر برای ایجاد سرطان تیروئید مطرح نموده‌اند.

مقدمه

سرطان تیروئید سرطان‌هایی هستند که درون‌ریز و مسئول تغییرات بدنی‌های غدد درون‌ریز هستند. این سرطان‌ها به‌طور خاص در ایالات منعقد آمریکا، بریتانیا و انگلیس بیشتر از سایر بدن‌هایی در هر اندازه است. این سرطان‌ها از نظر نوع و شکل سلول‌های آلمانی و فولیکولی به شکل مدولاری، پروتوانکوژن (MTC) وRET ایجاد می‌گردد. سرطان تیروئید با ایجاد بلایی در خوشه‌های متابولیک سلولی و کلونی‌های ژنوتپی‌های غدد درون‌ریز ایجاد می‌گردد.

در اینجا، توضیحاتی در مورد ایجاد سرطان تیروئید با استفاده از نشانگر زنیکی RET پروتوانکوژن فولیکولار و مدولاری تیروئید ارائه می‌شود.
بی‌شماران گوارا بدخم همان آمیلوبید که توضیح داده شده در سال 1959، هزاران‌ها در کشورهای مختلف مشخصی را برای آن ارایه نموده‌اند. در این بخش، می‌توان به ارائه نمونه‌هایی از سلول‌های پارافایلیکولار (سلول‌های C) مبتلا به سرطان متعدد در سالهای اخیر به میزان زیادی افزایش یافته است. این بیماری توده‌ای به امروزه تغییرات زننده‌ای دارای چنین تومورها و ناشناکا نتوانداید. به علیه این انتشار بالاتر به بیماران پیش‌بینی شده است.

سرطان مدولاری تیرورید

سرطان مدولاری تیرورید نوعی بدخم نیست که در مقاله‌های تازه‌تری نادر است که نخستین بار توسط زاکر در یک مقاله آلمانی به عنوان گوارا بدخم همان آمیلوبید مطرح می‌شود. در این بخش، می‌توان به ارائه نمونه‌هایی از سلول‌های پارافایلیکولار (سلول‌های C) مبتلا به سرطان متعدد در سالهای اخیر به میزان زیادی افزایش یافته است. این بیماری توده‌ای به امروزه تغییرات زننده‌ای دارای چنین تومورها و ناشناکا نتوانداید. به علیه این انتشار بالاتر به بیماران پیش‌بینی شده است.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.

سرطان مدولاری تیرورید

در این مقاله مروری به سرطان مدولاری تیرورید و ناشناکا جهت در اکثریت اصلی پروتین‌های RET و اهمیت گروه‌های زننده این بیماری می‌تواند با مدیریت بهینه بیماران مبتلا به اختلال مورد بررسی قرار گردد.
شناختگر

شناختگرMULTIPLE ENDOCRINE NEOPLASIA C Typ...
طلولی و وجود داشته باشند و بدون تشخیص بماند، علایم
شدیدی پروئ خواهند کرد. این بیماری معمولاً چندین سال
پس از تشخیص سرطان مخلوطی تیروئید رخ می‌دهد و
متوسط سن شروع آن ۳۸ سالگی است.

اوتائی از ال‌ام‌نی-۲ا (CLA) به همراه آمیلوبیدز لیکن جلیدی (MEN2A) است؛ این
ضایعات پوستی در ناحیه فوقانی پشت بدن ایجاد می‌شود و
می‌توان است پیش از سرطان مخلوطی تیروئید تظاهر یابد
(شکل A-۲،۳).

سالگی رخ می‌دهد. بیش از ۷۰ درصد این بیماران متاستاز به
عدم نفوذگری گرفته و درمان داروهای فتکرومودیتوما معمولاً
پس از ایجاد سرطان مخلوطی تیروئید و یا هم زمان با آن
دیده می‌شود. با این وجود در ۳۲-۷۲ درصد موارد اولین
علاقه بیماری MEN2A، فتکرومودیتوما است.

هایپرپلیازی پاتراتیروئید عموماً خفیف است و نوع آن
می‌توان است از یک آنومالی تا یک هایپرپلیازی واضح متغیر
باشد. بیشتر افراد برای هایپرپلیازی پاتراتیروئید علائمی
ندارند. ولی این حال افزایش دفع ادراری کلسیم و سنگ کلیه
می‌توان شده. اگر هایپرپلیازی پاتراتیروئید به مدت

Coetaneous lichen amyloidosis

Eyelid Mucosal neuroma

Tung Mucosal neuroma

چچهاری از MEN2A در ناحیه غنی از سیستن پرتوپلاس
۴۲ دراکزون‌های ۱۱ و ۱۱ مشاهده می‌شود.

جهش‌های MEN2A و MEN2B در بهبود دیگری از بیماری، هماهنگی
با بیماری هیرشپرگنگ با شیوع حدود ۱۶ درصد
است.

مراحی بالینی سرطان مخلوطی تیروئید در بیماران مبتلا
به توده‌های نوع از این پاتراتیروئید بیماری است.

کد نهایی جهش‌های دیگری از پروتوآنکوژن RET

i- Cutaneous Lichen Amyloidosis
ii-Hirschsprung
شناسگان نئولازی چندگانه درون رنگ نه

تعریف اولیه از شناسگان MEN2B نخستین بار توسط Wagenmann و کمکی در سال 1972، بررسی در سال 1972 را بنا گردید و سپس سپس در سال 1966 این یافته های متصل به

در یک فرد مبتلا و خانواده وی توسط ویلیامز و MEN2B پولاتک در سال 1966 اردیک، این یافته شامل ضخیم

شدن لبه، ضایعات زبان، سرطان مداری تیرورید و

فتوکروماسایتوما بود.

شناخت این شناسگان در دو حده

4-5 درصد موارد شناسگان MEN2B در این موارد می‌شود.

مشخصات با استفاده از سرطان مداری تیرورید مهاجم و زودرس در همه افراد

مبتلا (به ویژه در سال نخست زندگی)، فتوکروماسایتوما

بر حده 50-16 درصد موارد (عدم وجود

هایپرپاراتروپیسیم، بیماری‌های روی لبه و دیگر

ناتئی از روی مبتلا به جلد و جنین (شکل 2))

کانگیوپاراتروپیسیم‌ها گزارش شده شده است.

بودن اندازه و عدم تناسب آن با یک یا دو

ناظر شده مداری است. این افراد مبتلا به MEN2B در نزدیکی سطح قادیمی (پشتی بیکارانه) و در جریان وبسیاری، ضعف عضلات پرتوکرمز اثر

افراد مبتلا به علت وجود تومورهای

مختلی در مراکز تضمینی، کامی

زیرپوستی، و ضعف عضلات پرتوکرمز است.

افراد مبتلا به علت وجود تومورهای

MEN2B می‌تواند به عنوان تومورهای

منشأ باشد. گوارش هستند که تنگر به مکاولون،

یوپیست و حتی اسپتی مگد. این موجود در

ناحیه پلک‌ها و توده‌ها و معده باید نیاز به

لیوانی پلک فوتیک گردید (شکل 3). از

برای کشف و همکاری کردن به این پژوهش و ثبت در

اجاره افراد بیماران مشاهده می‌شود. این افراد مبتلا به شناسگان MEN2B در طی سال نخست زندگی

تحت عمل جراحی پرتوکرمیکی یا پرتوکرمیکی قرار نگیرد.

احتمال زیاد سرطان مداری تیرورید مهاجم و زودرس

کریوزیت که آنها خواهد شد. 17-20 افراد مبتلا به شناسگان MEN2B

نو带 a غلب سابقه خانوادگی

i - MEN2B; OMIM#162300
ii - Wagenmann
iii - Frohboese
iv - Williams
v - Pollock
vi - Brauckhoff
1. RET51 و RET9
2. GDNF
3. RET51 و RET9
4. GDNF
5. RET51 و RET9
چش در کودن‌های غنی از سیستم‌های بیشتر خارج سلولی

در مطالعاتی که در سلول‌های بیماری‌های پروتئینی (PSPN) و ARTN, NTRN, GDNF و ARTN, NTRN, GDNF و GDNF و اثر آن بر انسداد و انتقال پیام‌های داخل سلولی، پروتئین‌ها و سس انسدادی در ناحیه خارج سلولی و در ناحیه داخل سلولی در کودن‌های غنی از سیستم‌های بیشتر خارج سلولی پیام‌های انتقال پیام را تامین می‌نمایند.

کلکتین‌های گروه ۱ و ۲، که در شرایط مختلفی از سلول‌های بیماری‌های پروتئینی (PSPN) و ARTN, NTRN, GDNF و ARTN, NTRN, GDNF و GDNF و اثر آن بر انسداد و انتقال پیام‌های داخل سلولی، پروتئین‌ها و سس انسدادی در ناحیه خارج سلولی پیام‌های انتقال پیام را تامین می‌نمایند.

شکل ۳-۸: گیرنده تیروزین کیناز RET این گیرنده دارای یک ناحیه خارج سلولی بیش و با دو ماه شبه کامرون و ناحیه غنی از سیستم‌های پروتئین‌ها و GDNF و اثر آن بر انسداد و انتقال پیام‌های داخل سلولی، پروتئین‌ها و سس انسدادی در ناحیه خارج سلولی پیام‌های انتقال پیام را تامین می‌نمایند.

پروتئین‌ها و سس انسدادی در ناحیه داخل سلولی در کودن‌های غنی از سیستم‌های بیشتر خارج سلولی پیام‌های انتقال پیام را تامین می‌نمایند.

• جهش‌های پروتئین‌آنتی‌ژن

جهش‌های پروتئین‌آنتی‌ژن RET پروتئین‌آنتی‌ژن RET جزو نشانگر گیرنده‌های تیروزین کینازی بود که نشان آن در توده‌سازی بیماری ZP از طریق اکتیویت است. گیرنده‌های RET در رابطه با انسداد و انتقال پیام‌های داخل سلولی، پروتئین‌ها و سس انسدادی در ناحیه خارج سلولی و در ناحیه داخل سلولی پیام‌های انتقال پیام را تامین می‌نمایند.
جدول 1- ارتباط ژن‌تایپ-فوتوراکوزن مختلف خطر جهش‌های پرتوآکوزن RET بر اساس ATA

<table>
<thead>
<tr>
<th>ATA</th>
<th>ژن‌تایپ</th>
<th>اثری بر ژن</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FMTC/MEN2A</td>
<td>G321R</td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2A</td>
<td>C515S</td>
</tr>
<tr>
<td>A</td>
<td>FMTC</td>
<td>532duplication</td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2A</td>
<td>G533C</td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2A</td>
<td>532duplication</td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2A</td>
<td>5319bp duplication</td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2A</td>
<td>R600Q</td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2A, B</td>
<td>K603E</td>
</tr>
<tr>
<td>A</td>
<td>Y606C</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>FMTC/MEN2A/HSRR</td>
<td>C609R/F/G/S/Y</td>
</tr>
<tr>
<td>B</td>
<td>FMTC/MEN2A/HSRR</td>
<td>C611R/F/G/S/Y</td>
</tr>
<tr>
<td>B</td>
<td>FMTC/MEN2A/HSRR</td>
<td>C618R/F/G/S/Y</td>
</tr>
<tr>
<td>B</td>
<td>FMTC/MEN2A/HSRR</td>
<td>C620R/F/G/S/Y</td>
</tr>
<tr>
<td>B</td>
<td>FMTC/MEN2A/HSRR</td>
<td>C630R/F/G/S/Y</td>
</tr>
<tr>
<td>B</td>
<td>MEN2A</td>
<td>633</td>
</tr>
<tr>
<td>B</td>
<td>FMTC/MEN2A/HSRR</td>
<td>6339bpduplication</td>
</tr>
<tr>
<td>B</td>
<td>FMTC/MEN2A/HSRR</td>
<td>63412bp duplication</td>
</tr>
<tr>
<td>C</td>
<td>MEN2A/CLA</td>
<td>C634R</td>
</tr>
<tr>
<td>C</td>
<td>FMTC/MEN2A/CLA</td>
<td>C634G/F/S/W/Y</td>
</tr>
<tr>
<td>C</td>
<td>MEN2A</td>
<td>63412bp duplication</td>
</tr>
<tr>
<td>C</td>
<td>634/12bp duplication</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>635/insertion ELCR/T636P</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>MEN2A</td>
<td>637</td>
</tr>
<tr>
<td>?</td>
<td>FMTC/MEN2A</td>
<td>K661E</td>
</tr>
<tr>
<td>?</td>
<td>S649L</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>K666E</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>788</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>FMTC/MEN2A</td>
<td>N777S</td>
</tr>
<tr>
<td>A</td>
<td>N776S</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2A</td>
<td>L790F</td>
</tr>
<tr>
<td>A</td>
<td>Y791F</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2A/hsMTT</td>
<td>V804L</td>
</tr>
<tr>
<td>A</td>
<td>V804M</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>MEN2B</td>
<td>V804M+E805K</td>
</tr>
<tr>
<td>D</td>
<td>MEN2B</td>
<td>V804M+Y806C</td>
</tr>
<tr>
<td>A</td>
<td>FMTC</td>
<td>G839K</td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2B</td>
<td>R833C</td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2B</td>
<td>R844Q</td>
</tr>
<tr>
<td>D</td>
<td>MEN2B</td>
<td>V804M+E805K</td>
</tr>
<tr>
<td>D</td>
<td>MEN2B</td>
<td>V804M+Y806C</td>
</tr>
<tr>
<td>?</td>
<td>FMTC/MEN2B</td>
<td>804/844</td>
</tr>
<tr>
<td>?</td>
<td>FMTC</td>
<td>582</td>
</tr>
<tr>
<td>?</td>
<td>R866W</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>R876</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>MEN2B/hsMTT</td>
<td>A883F</td>
</tr>
<tr>
<td>A</td>
<td>S891A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>sMTT/MEN2B</td>
<td>R912P</td>
</tr>
<tr>
<td>A</td>
<td>sMTT/MEN2B</td>
<td>M918T</td>
</tr>
<tr>
<td>D</td>
<td>sMTT/MEN2B</td>
<td>920</td>
</tr>
<tr>
<td>D</td>
<td>sMTT/MEN2B</td>
<td>922</td>
</tr>
<tr>
<td>A</td>
<td>FMTC/MEN2A</td>
<td>V804M+V781</td>
</tr>
<tr>
<td>D</td>
<td>MEN2B/MEN2A</td>
<td>V804M+S904C</td>
</tr>
<tr>
<td>D</td>
<td>V786/S904C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FMTC</td>
<td>768/919</td>
</tr>
<tr>
<td>D</td>
<td>MEN2B</td>
<td>768/919</td>
</tr>
<tr>
<td>D</td>
<td>MEN2B</td>
<td>758/919</td>
</tr>
</tbody>
</table>

نتایج:
- نتایج شبکه‌های سیستمیتایپ سیستم‌های جهش‌زا بسیار حفاظت می‌شود.
- نتایج‌های سیستم‌های جهش‌زا به‌آسانی از شبکه‌های سیستم‌های جهش‌زا می‌توانند تهیه شوند.

درجه ارتباط فوتوراکوزن بر اساس MEN2A

- MEN2A در جهش‌های پرتوآکوزن RET

ارتباط قوی با جهش در کدون‌های 327 و 348 و 561، 561 و 654، و 561 و 654، جهش‌هایی ناشی از گیرنده نیز در بخش تیروزین کناتیب گیرنده RET در شبکه MEN2A/CLA که در ژن‌تایپی گیرنده RET می‌باشد.

جهش‌های واریانت‌های ژن‌های مختلف از ژن‌های مختلف، در سیستم‌های جهش‌زا بسیار حفاظت می‌شود.

فوتوراکوزن و موسایتو تن‌با جهش در کدون‌های 327 و 348 و 561، 561 و 654، و 561 و 654، جهش‌هایی ناشی از گیرنده نیز در بخش تیروزین کناتیب گیرنده RET در شبکه MEN2A/CLA که در ژن‌تایپی گیرنده RET می‌باشد.

درجه ارتباط قوی با جهش در کدون‌های 327 و 348 و 561، 561 و 654، و 561 و 654، جهش‌هایی ناشی از گیرنده نیز در بخش تیروزین کناتیب گیرنده RET در شبکه MEN2A/CLA که در ژن‌تایپی گیرنده RET می‌باشد.

جهش‌های واریانت‌های ژن‌های مختلف از ژن‌های مختلف، در سیستم‌های جهش‌زا بسیار حفاظت می‌شود.

فوتوراکوزن و موسایتو تن‌با جهش در کدون‌های 327 و 348 و 561، 561 و 654، و 561 و 654، جهش‌هایی ناشی از گیرنده نیز در بخش تیروزین کناتیب گیرنده RET در شبکه MEN2A/CLA که در ژن‌تایپی گیرنده RET می‌باشد.
2- سندرم‌های ملکولی جهش‌های RET. در این سندرم باعث نیاز‌های خاصی در مورد بیماران مبتلا به سرطان می‌گردد.

- مورد یک مکمل‌سازی ایجاد می‌گردد.
- مورد از یک مکمل‌سازی استفاده می‌شود.
- مورد به تونوزیRET

به‌طور کلی، می‌توانیم بگوییم نیاز به این مکمل‌سازی برای بیمارانی که از سرطان مبتلا هستند، وجود دارد.
مجله غدد درون زیست متابولیسم ایران
دوره هفتم شماره 2 خرداد 1394

166

آناتومی و ترکیب بیومارکر DNA

آناتومی تغییرات بیومارکر DNA و در جهت کاهش خطر استاتیسمیک واقعیت است. می‌توانید از تغییرات دیگر مانند تغییرات تغییرات با بیماری و رونق بیماری وجود آزمایش زننکی برای نوع بیماری جهش‌های زرم لاپاداری دو اسپیت الکترون‌یک در RET

شناختی فیزیولوژیک برای مشاهده قرار گیرد. ۱۰۹ این مشاهده وجود دارد.

RET سوئیجی

RET سوئیجی از دست آمیزی با ابتلا به بیماری RET نباید دانست. داشته باشند. بیماران مبتلا به گسترش قرار گیرد. داده ها در آزمایش انجام گیرد که شایل ایه اطلاعات دربردارنده یکی از ... ۱۱۰

آزمایش، احتمال منفی کافی بوده و وجود خطا در آزمایش RET سوئیجی دارد.

روالات امام‌گانه از تغییر آزمایش پدیده برای بیمار و سایر اعضای خانواده واژگونی DNA برای کل ناحیه رمزگردزه زن

امروزه آزمایش زننکی غربالگری جهش‌های زرم لاپاداری DNA از طریق تغییرات مناسب DNA انجام DNA می‌گردد. بیشتر آزمایشگاه‌ها شک کودسیستئین ۶۱۹، ۶۱۶، ۶۱۴، ۶۱۲ و ۶۱۰ را بررسی می‌نماید. برخی آزمایشگاه‌ها علائم دیر در آزمایش کاهش ۱۵ و ۱۳ آزمایشگاه‌ها و ۱۶ و ۲۳ آزمایشگاه‌ها نیز مواد بررسی قرار می‌دهند.

برای آن دسته از اعضای خانواده آزمایش سوئیجی زننکی برای DNA برای کل ناحیه رمزگردزه زن

آزمایش زننکی برای غربالگری جهش‌های زرم لاپاداری DNA انجام DNA می‌گردد. بیشتر آزمایشگاه‌ها شک کودسیستئین ۶۱۹، ۶۱۶، ۶۱۴، ۶۱۲ و ۶۱۰ را بررسی می‌نماید. برخی آزمایشگاه‌ها علائم دیر تغییرات مناسب DNA انجام DNA برای کل ناحیه رمزگردزه زن

امروزه آزمایش زننکی غربالگری جهش‌های زرم لاپاداری DNA از طریق تغییرات مناسب DNA انجام DNA می‌گردد. بیشتر آزمایشگاه‌ها شک کودسیستئین ۶۱۹، ۶۱۶، ۶۱۴، ۶۱۲ و ۶۱۰ را بررسی می‌نماید. برخی آزمایشگاه‌ها علائم دیر تغییرات مناسب DNA انجام DNA برای کل ناحیه رمزگردزه زن
چیزهایی که در این گروه قرار گیرد به مقایسه با گروه B بیمارانی که در این گروه قرار می‌گیرند در مقایسه با گروه B در محدوده سنی یکسان، سطح کلسترول کمتر، مرحله پایان‌نامه، نرمال، و احتمال بهبود یا بهبود بررسی شده است. این چیزها به طور می‌باشد مربوط به کناره‌های ۷۲۶ و ۷۴۹ (اگرکون ۱۳) و ۸۸۶ (اگرکون ۱۵) هستند. اکثر معانی سنتگی‌های در نظر گرفته شود. اگرچه معمولا پس از پنج سالگی انجام خواهد گرفت.۱۵:۱۴ سرطان مدولاری

References

to papillary thyroid carcinoma? J Thyroid Res 2011; 2011: 832163.

86. Wang X. Structural studies of GDNF family ligands with their receptors: Insights into ligand recognition and activation of receptor tyrosine kinase RET. Biochim Biophys Acta 2013; 1834: 2205-12.
Review Article

Medullary Thyroid Cancer Screening Using the RET Proto Oncogene Genetic Marker

Hedayati M1, Zarif Yeganeh M1, Sheikholeslami S1, Daneshpour M1, Azizi F2

1Cellular and Molecular Research Center, & 2Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran

e-mail: hedayati@endocrine.ac.ir

Received: 20/01/2015 Accepted: 21/04/2015

Abstract

Introduction: Thyroid carcinoma including four types papillary, follicular, medullary, and anaplastic is the most common endocrine malignancy. Medullary thyroid carcinoma (MTC) is one of the most aggressive forms of thyroid cancer and it accounts for up to 10% of all types of this disease. The mode of inheritance of MTC is autosomal dominant and is closely related to mutations of gain of function (missense mutations) in the RET proto-oncogene, well known in MTC development. MTC occurs as hereditary (25%) and sporadic (75%) forms. Hereditary MTC also has two syndromic (multiple endocrine neoplasia type 2A, B; MEN2A, MEN2B) and non-syndromic (Familial MTC, FMTC) types. Increasing advances in molecular biology, genomics, and proteomics have led to personalized therapeutic interventions. Over the last two decades, the genetic basis of tumorigenesis has provided useful screening tools for affected families. Advances in genetic screening of the RET have enabled early detection of hereditary MTCs and prophylactic thyroidectomy for relatives who may not show any symptom of the disease. In this review we emphasize the main RET mutations in the syndromic and non syndromic forms of MTC, and have tried focus on the importance of RET genetic screening for early diagnosis and management of MTC patients.

Keywords: Genetic screening, Medullary Thyroid Cancer, FMTC, MEN2A, MEN2B, RET proto-oncogene