تاثیر تجویز خوراکی نیترات بر آسیب قلی در موش‌های صحرایی با دیابت نوع ۲

سجاد جدی، سعیده خلفی، چلال زمان، محبوبه قنبری، دکتر اصغر قاسمی

چکیده

مقیده: بهمراه افزایش مصرف دیابت هنوزی که در نهایت موجب مرگ و میر بیش از ۵ درصد افراد متلاشی می‌شوند. بیماران قلی کار، ولی تاکنون مطالعاتی در مورد اثر دیابت به آسیب قلی ناشی از دیابت گزارش نشده است. هدف این مطالعه برسی بر اثر دیابت به آسیب قلی موش صحرایی میلارد. تحقیق در نهایت نشان داد که دیابت و دیابت+Nیترات در موش‌های صحرایی مشابه به دیابت در قلب موش‌های صحرایی در انتها آزمایش اندازه‌گیری شد.

کلمات کلیدی: نیترات، آسیب قلی، دیابت، کرائین کیدین، لاکتات دهیدروژنаз، موش صحرایی

دریافت مقاله: ۱۴/۳/۲۰۲۰، دریافت تکمیلی: ۱۴/۳/۲۰۲۰

مقدمه

دیابت کی از شایع‌ترین بیماری‌های غذایی در سال ۲۰۲۰ به ۵۹۲ میلیون نفر در سال ۲۰۲۵ در آمریکا حدود ۲۴ درصد از افراد بالای ۴۰ سال دچار بیماری دیابت هستند. دیابت نیترات از جمله اعضای بندهای سویه دار و منجر به آسیب عوارض قلی عروقی می‌شود که مسئول بیش از ۵ درصد از مرگ و میر ناشی از دیابت هستند. "

1- Lactate dehydrogenase
ii- Creatine kinase

آزمایش‌های سنتزی واند لاتکتات دهیدروژناز (LDH) و کرائین کیدین (CK) به دنبال آسیب شغای سلول از باتف با اسید بی‌سیبیده به خون نشته می‌کند و به عوامل شاخص‌های تشخیصی در آسیب سلولی مورد استفاده قرار می‌گیرند. دیابت موش‌های صحرایی اکسیداسیون پروپی‌سنسیون در پی و آسیب شغای سلول می‌گردد. آزمایش‌های آزاد رشد از سلول‌های قلبی عضو در LDH و CK-MB می‌گردد.
گروه‌بندی حیوانات

اندازهگیری از روش نگشستنی جریس

i- Nitric oxide
ii- Lundberg
iii- Endothelial nitric oxide synthase
iv- Malonyldialdehyde
v- Wistar

vi- Nicotinamide
vii- Streptozotocin
viii- zinc sulfate

در دیابت، در دسترس بودن اکسید نیتریک (NO) سرمی کاهش می‌یابد که ممکن است از علل ایجادگری عوارض قلبی در افراد دیابتی باشد. در سال 1992، لاندریگ و همکارانش گزارش کردند که علاوه بر مسیر کلیسیک که از آل‌آرژن‌های تولید می‌شود، در مسیری جدید از نیترات و نیتریت هم تولید می‌شود. این گزارش باعث ایجاد تردید در ایفای نقش مدیت ترویج و ترکیب این مواد به عنوان سیستم پیش‌پرداز رای اولیه موتر NO در بدن به خصوص در زمان‌های کاهش NO عمل می‌کند. اگرچه حاصل‌های در مورد بروز هایپرگلیسی و دیابت نوع 2 در دوره‌های بالای نیترات و نیتریت وجود دارد، اما نقص مقدار درمان با نیترات و نیتریت در کاهش فشار خون کاهش استرس اسکپاسیانی، کاهش مصرف اکسیژن در زمان ورزش و کاهش چربی خون در موش‌هایی که فاقد ذهن بودند، نشان داده شده است. درمان با نیترات سیستم‌ها دو میلی‌گرم در لتر جلوگیری از افزایش فشار خون و فشار خون به‌طور متوالی کاهش دارد. به علاوه، بررسی نقش درمانی نیترات در سطح MDA و سطح قلی NO در موش‌های صحرایی با دیابت نوع 2 بود.

مواد و روش‌ها

موش‌های صحرایی نر نزدیک سراغ دو نویسنده برای افزایش پیدا می‌کنند و به عنوان شاخص کروز قلبی و انفارگکوس میکاردر مورد استفاده قرار می‌گیرند. در دیابت، سه ترکیب که از علل ایجادگری عوارض قلبی در افراد دیابتی باشد، نامیده می‌شود، در مسیری جدید از نیترات و نیتریت، دو ترکیب ایجاد می‌شود. این ایجاد باعث ایجاد تردید در ایفای نقش مدیت ترویج و ترکیب این مواد به عنوان سیستم پیش‌پرداز رای اولیه موتر NO در بدن به خصوص در زمان‌های کاهش NO عمل می‌کند. اگرچه حاصل‌های در مورد بروز هایپرگلیسی و دیابت نوع 2 در دوره‌های بالای نیترات و نیتریت وجود دارد، اما نقص مقدار درمان با نیترات و نیتریت در کاهش فشار خون کاهش استرس اسکپاسیانی، کاهش مصرف اکسیژن در زمان ورزش و کاهش چربی خون در موش‌هایی که فاقد ذهن بودند، نشان داده شده است. درمان با نیترات سیستم‌ها دو میلی‌گرم در لتر جلوگیری از افزایش فشار خون و فشار خون به‌طور متوالی کاهش دارد. به علاوه، بررسی نقش درمانی نیترات در سطح MDA و سطح قلی NO در موش‌های صحرایی با دیابت نوع 2 بود.
SDA - و حفاظت قلبی در دیابت

SPSS ویرایش تحلیل آماری آماری داده‌ها با استفاده از نرم‌افزار

باتریکردهای خون از عوامل تنشی شدید

سانتوبریتیک: سنتی که به صورت بیانهای: انحراف

ماییت بیوکمپسی: NOX

SDS-PAGE در روز صفر و 200 میکرولیتر از محلول بالایی,

LDH و CK-MB

برای انتزانگی‌های سطح سرمی

روز LDH 40 میکرولیتر و CK-MB

یک روش رنگ‌سنجی شیمیایی انتزانگی‌های یک طرفه

مقدار NOX

و آزمودن تعیین تکیه استفاده شد. به منظور

مقدار NOX

و در یک گروه مختلف از تغییرات 20 میکرولیتر LDH

کاهش م源源: (P<0.05)در دیابت و 0.1 نشان داده.

LDH و CK-MB

کاهش م源源: (P<0.05)در دیابت و 0.1 نشان داده.

LDH و CK-MB

کاهش م源源: (P<0.05)در دیابت و 0.1 نشان داده.

LDH و CK-MB

کاهش م源源: (P<0.05)در دیابت و 0.1 نشان داده.

LDH و CK-MB

کاهش م源源: (P<0.05)در دیابت و 0.1 نشان داده.
جدول 1- میانگین (± انحراف معیار) وزن و قند خون در گروه‌های مختلف (تعداد=۸ در هر گروه) در روز ۱۰ و ۲۰

صدای+نیترات	کنترل+نیترات	دیابت	وزن (کرم)	روز
۲۰/۲۵/۱۱	۲۱/۰/۲۵/۱۱	۲۱/۲/۲۵/۱۱	۴۱/۲/۲۵/۱۱	۱۰
۲۰/۲۵/۱۱	۲۱/۰/۲۵/۱۱	۲۱/۲/۲۵/۱۱	۴۱/۲/۲۵/۱۱	۱۰
۲۰/۲۵/۱۱	۲۱/۰/۲۵/۱۱	۲۱/۲/۲۵/۱۱	۴۱/۲/۲۵/۱۱	۱۰
۲۰/۲۵/۱۱	۲۱/۰/۲۵/۱۱	۲۱/۲/۲۵/۱۱	۴۱/۲/۲۵/۱۱	۱۰

نمودار ۱- نمای کلی از مراحل اجرای کار

نمودار ۲- مقادیر اکسترمین نیترات در گروه‌های مختلف قبل (روز صفر) و بعد از دمده (روز هفتم) با نیترات سدیم، به منظور مقایسه سرم در روز صفر و ۲۰ هفته دیابت+نیترات سدیم با نیترات سدیم (ANOVA) و آزمون فیشر (F) بین گروه‌های مختلف از تحلیل واریانس یک طرفه (ANOVA) و آزمون تفیقی تورکی استفاده شد. به منظور مقایسه سرمی بین روزهای صفر و ۲۰ در گروه‌های مختلف از آزمون از تی‌زوج NOX
استفاده شد. تعداد رت در هر گروه 8 عدد بود. نمودار سیاه روز صفر و نمودار سفید روز 70 مطالعه را نشان می‌دهد.

تفاوت با گروه کنترل، 4 تفاوت با گروه دیابت، P<0.05 از نظر آماری معنی‌دار است.

نمودار 3 - مقایسه کاراکتری کینیاز سرمو در گروه‌های مختلف قبل و بعد از درمان با نیترات سدیم. به منظور مقایسه کراتین کینیاز سرمو در روز صفر و 70 روز سفید با کینیاز سرمو در روز صفر و 70 روز سفید با کینیاز سرمو در روز صفر و 70 روز سفید روز 70 مطالعه را نشان می‌دهد.

تفاوت با گروه کنترل، 4 تفاوت با گروه دیابت، P<0.05 از نظر آماری معنی‌دار است.
نمودار 5 - مقادیر قلبی مالونیل دی آلیکید در گروه‌های مختلف در انتها مطالعه. تعداد 8 در هر گروه. * تفاوت با گروه

کنترل: 4 تفاوت با گروه دیابت، 5/0/0>P از نظر آماری معنی‌دار است.

بحث

نتایج این مطالعه نشان داد که در دیابت نوع 2، سطح LDH و CK-MB كاهش و سطح سرمي NOx سرطين انزیم افزایش می‌یابد. به دنبال 2 ماه مصرف نتایج سنجیدن سطح سرمي NOx در دیابت + نتایج به مقدار طبیعی تندیک MDA قلبی گردید.

نتایج مطالعه حاضر نشان داد که سطح سرمي NOx در گروه دیابتی کاهش می‌یابد. مشابه با این یافته، در همکاریان، نشان داده شده که در دیابت، سطح سرمي و قلبی کاهش می‌یابد. 20 در دیابت، تولید NO توسط ایزوفرم NOx القایی نیتروکس اکسید استراتژی (iNOS) افزایش می‌یابد و لی

iii - Reactive oxygen species
iv- Bioavailability
v - Stockklauser-Färber

i- Xu
ii- Inducible nitric oxide synthase
هیچ‌چیزی در شرایط دایتی دارا اثر واقعی NOx را نکته می‌دارد.

اثر مخفی می‌شود که اثر می‌تواند ناشی از افزایش سطح سرمی NOx در گروه دایتی باشد که موجب حفظ غشا سلول با جلوگیری از لیپید و اسکایمین آن می‌شود.

از آن‌جایی که اثر انگیزه‌ای سیستوزولی به‌خود را نیز کاهش می‌دهد، کاهش ضرر آنتی‌اکسیدانت‌ها و کاهش افزایش سطح اسکایمین توسط متابولیزهای دایتی نوع ۲ و همچنین در مدادهای حیوانی دایتی نوع ۲/۳ گزارش شده است. در مطالعه انجام شده توسط خلفی و همکارانش نیز مشاهده شد که درمان با دایتی به مدت ۲ ماه در گروه دایتی و هم در گروه دایتی نوع ۲ موجب افزایش سطح کالزیوم و ترکیب آنتی‌اکسیدانت‌های مسی کاهش كاهش اکسیداسیون نیترات است.

با وجود این که نیترات دارای اثرات مفید نیز دارد:

باشند، ولی در برخی از مطالعات شده است که بین

هم قدرت‌های غلظت‌های بالای آنتی‌اکسیدان آریتمنیستوی و وجود دارد. در مطالعه‌ای که توسط رنگ رنگ و همکارانش صورت گرفت مشخص شد که نیترات با کاهش مصرف

گلیکوز در بهداشت موجب افزایش هایپرگلیکمی می‌شود. اگرچه مطالعه دیگری نشان داد که افزایش NOx در شرایط دایتی موجب ایجاد مرگ سلول‌های بنی و کاهش تولید انسولین می‌گردد، همچنین گزارش شده است که نیترات از طریق ایجاد کاکاریکاپی و یاردویی موجب کاهش ترشح انسولین می‌گردد.

یکی از این مطالعات استفاده از دوز کم نیترات است که در مطالعه‌ای در نیترات آلوده‌های ترکیبی ترکیبی صورت گرفته است، این دو با آنتی‌اکسیدان مشخص شده است که برای کاهش بیش از حد مصرف سدروم قابلیت‌های کاهش استفاده از دوز کم در آن است که این دوز به راحتی می‌تواند به سبب افزایش NOx و انسولین در مدل دایتی نوع ۲ و نیز عدم اندازه‌گیری سطح NOx قابل استفاده باشد.

i - Peroxynitrite
ii - Celik
iii - Huang
iv - Zappacosta
v - Goldberg
vi - Awaai
vii - Nikoalava
viii - Oliver
ix - Tanaka
x - Margiavichene
References

Original Article

Effect of Oral Nitrate Administration on Myocardial Injury in Type 2 Diabetic Rats

Jeddi S1, Khalifi S2, Zaman J1, Ghanbari M1, Ghasemi A1

1Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 2Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran

e-mail: Ghasemi@endocrine.ac.ir

Received: 25/11/2014 Accepted: 19/05/2015

Abstract

Introduction: Cardiovascular diseases are the most important complications of diabetes, representing the ultimate cause of death in more than half of all patients with the disease. Nitrate has been demonstrated to be an effective add-on therapy in patients with heart failure but no study has been yet addressed the effect of nitrate therapy on myocardial injury associated with diabetes. The aim of this study was therefore to assess the effect of nitrate therapy on myocardial injury in type 2 diabetic rats. Materials and Methods: Thirty-two adult male Wistar rats were divided into four groups (n=8): Control, control+nitrate, diabetes, and diabetes+nitrate. Type 2 diabetes was induced by injection of nicotinamide (95 mg/kg) 15 min before injection of streptozotocin (65 mg/kg). Nitrate in control+nitrate and diabetes+nitrate groups was added to the drinking water (100 mg/L for 2 months). Serum nitrate+nitrite (NOx), CK-MB, and LDH were measured before and at the end of the study and heart malonyldialdehyde (MDA) was measured at the end of the study. Results: Nitrate therapy in diabetic rats significantly increased serum NOx levels (29.2±5.6 vs. 42.8±9.8 µmol/L, P<0.05), decreased heart MDA levels (9.7±1.2 vs. 6.2±0.6 µmol/L, P<0.05), and decreased serum levels of both CK-MB (471.0±29.7 vs. 284.9±10.3 U/L, P<0.05) and LDH (791.6±21.9 vs. 497.8±13.1 U/L, P<0.05). Conclusions: Nitrate therapy provided cardioprotection by increasing NO levels and decreasing oxidative stress in type 2 diabetic rats.

Keywords: Nitrate, Myocardial injury, Diabetes, Creatine kinase, Lactate dehydrogenase, rat