بررسی اثرات رژیگلیژتریزون و اپی گالوتانجین گالات بر بیان پروتئین PGC-1α مقاوم به انسولین القا شده با پالمیتات

دکتر سالار بختیاری1، آذر باباخانی2، دکتر کریمی حقانی3

1) گروه بیوشیمی باالی، دانشکده علوم پزشکی، دانشگاه علوم پزشکی ایلام. ایلام. 2) کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی ایلام، ایلام. 3) گروه بیوشیمی باالی، دانشکده علوم پزشکی ایلام. ایلام. 

مقدمه: تغییر در سوخت و ساز لیپیدها یکی از سازوکارهای مهم برای درمان مقاومت به انسولین و در تبیه دیابت نوع 2 است. از سوی دیگر، PGC-1α به عنوان یکی از تنظیم‌کننده‌های کلیدی پروژز و مهم‌ترین میکرو‌نکاتوریز، از راه افزایش باکسیداسیون لیپیدها، نقش مهمی در بهبود حساسیت به انسولین ایفا می‌کند. در پژوهش حاضر، اثرات اپی‌گالوتانجین گالات PGC-1α به عنوان یکی از این مکانیسم‌ها بررسی شد و با داروی (EGCG) م مقایسه گردید. مواد و روش‌ها: پس از تیمار میوه‌استهای C2C12 مقایسه گردید. سپس میزان بیان پروتئین PGC-1α در پس و پس از تیمار انسولین و همچنین، یک آزمایش از روش و سرعت بالاتر مورد بررسی قرار گرفت. این نتایج تبییه با پلیمریان PGC-1α در C2C12 به طور معنی‌داری کاهش داد (P<0.05). این پژوهش با ارث معنی‌داری بر PGC-1α در نتیجه داد (P<0.05)، در حالی که تیمار EGCG و رشد از سطح پروتئین تحت تبییه انسولین و اپی‌گالوتانجین گالات در C2C12 به طور معنی‌داری کاهش داد (P<0.05) و EGCG بر سطح پروتئین PGC-1α و EGCG از این نتایج به نظر می‌رسد که اثرات ضد دیابتی EGCG از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از راه تاثیر بر PGC-1α و PGC-1α در نتیجه C2C12 و از RGSZ مثال‌هایی از دیابت به انسولین مقاوم در سرطان، assessing the effects of PGC-1α expression on insulin sensitivity in cancer cells.
مقاله: الف، پرکسیسم پروتئین-اکتیوئتار (PPARs) برای تاثیر بر پرکسیسم انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه تاثیر بر پیامدهای انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه تاثیر بر پیامدهای انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه تاثیر بر پیامدهای انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه تاثیر بر پیامدهای انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه تاثیر بر پیامدهای انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه تاثیر بر پیامدهای انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه تاثیر بر پیامدهای انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه تاثیر بر پیامدهای انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه تاثیر بر پیامدهای انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه تاثیر بر پیامدهای انسولین و برنامه‌های تنظیم و انرژی زیستی میتوکریپتیک مخلوط می‌شوند. پپتیزاسون به واسطه Tapirov می‌شود. 

برای این که پالماتات و انرژی سیستم BSA با فاقد است بچه کاتژورکی گردید. به این منظور، غلتقهای مورد نظر از سلیم پالماتات در اثر 50% حل

iv- Fetal Bovine Serum
تنه با پروتئین مربوطه موشی واکنش دادند و هیچکدام از آنها مشاهده نشدند. در آزمایش حادثه سه سال اندازه گیری شد.

SPSS

تعداد تحلیل‌های آماری با استفاده از نرم‌افزار SPSS نشان داد که سه ساله سه عنصر کاهش گرفته و داده‌ها به صورت میانگین/انحراف معیار نشان دادند. مقایسه جدول گروه‌ها با استفاده از آزمون ANOVA کرده‌ایم. در شرایط و جدول تفاوت معنی‌دار آماری بین گروه‌ها

از آزمون Post-hoc یافته‌ها می‌باشند. مقادیر p<0.05 از لحاظ آماری معنی‌دار دارن از تصور گرفته شد.

یافته‌ها

سلول‌ها پس از کمکش ۲ روز به میوتین تبدیل شده و ویژگی‌های شبیه به عضلات بیدا می‌کنند (شکل ۱).

a)

b)

شکل ۱ (a) میوپلاست‌های C2C12 در محیت کشت DMEM شده و این محلول به BSA ۱/۱۰ حاوی DMEM سپس آین می‌کشید به مدت ۲ ساعت در ۳۷ درجه سانتی‌گراد روی شیشه اکتوپس. سپس پس از ۲ ساعت، آین می‌کشید. دو گروه

قرار گرفت. سلول‌ها به مدت ۵، ۷، ۱۲، ۱۷، ۲۲ و ۲۷ ساعت به پالتامین تیمار BSA شدند. برای تیمار انسولین، آین می‌کشید حاوی BSA قاد قصد چهار آزاد و انسولین ۱۰۰ نانومولار استفاده

شده. به منظور تیمار ۱/۵ میلی‌مولار و ۲/۵ میلی‌مولار RGZ و/یا میلی‌مولار DMSO را به ترتیب در محلول EGCG کرده، سپس محلول‌های با دست آمده هم به صورت مجزا و هم به صورت همزمان به محلول‌های کنترل شده با

پالتامین و انسولین ضرایب کرده‌ایم. در این مرحله از

محیط‌های استفاده شد که به مدت ۲۴ ساعت با پالتامین

انکوبه شده و بعد تحت تیمار انسولین قرار گرفتند.

برای بررسی آرات PMSF (۰.۱ میلی‌مولار) استخراج و غلظت آن بر اساس روش Bravford اندازه‌گیری شد. ۲۰۰۰ ۲ میکروگرم از عصاره C2C12 و PGC-۱α پروتئین روز جز در ۱۰۰ میکرولیتر SDS-PAGE الکترفونژ شد. سپس سلول‌ها به سبد سیتیوالا متعلق شدند و سپس به

مدت ۱ ساعت در دما ۴ درجه سانتی‌گراد در محلول BSA انکوبه گردید. در مرحله بعد، غشا به بند actin اولیه هزینه β با به مدت ۱ ساعت برانگیخته شد. غشا به پس از ۴ بار شستشوی دیقیق‌های یا بایفر TBST غشا به

مدت یک ساعت با آنتی‌بادی ثانویه‌ای کازانه‌گویا با HRP انکوبه شد. چهار بار شستشوی دیقیق‌های نجاع به و سپس غشا با سویستار کمی لومینوژنس ECL به مدت ۱–۱ دقیقه انکوبه گردید. در مرحله بعد، غشا با یافم‌رایتوزی حساس مجاور شد و فیلم با استفاده از محلول‌های ظوهور و ثبت‌گرندگان، فیلم انسک اسکر شده و بتوان نیمه کمی غلظت

پروتئین با ترکیب Scion Image تجزیه و تحلیل گردد. سپس با تقدیم دانسته‌های باند PGC-۱α با میرآیوی چنل‌های

β-actin متناشته، مقدار بیان دن مورد نظر نمایش گردید.

تمام آن‌ها نشان داده‌های اولیه مورد استفاده مونوکلونال بودند و
آنزیم افزایش معنی‌داری را از آغاز تا 28 ساعت به حدود 0.17 رشد است. فعالیت آنزیم پس از 24 ساعت به ترتیب 4/0 و 55% معنی‌داری گردید.

نمودار 1. تست کراتین کیناز جهت تایید تمایز سلول‌های میوبلسته با میوتوپ. میزان فعالیت آنزیم کراتین کیناز به ترتیب پس از گذشت 23/2، 26 و 29 ساعت از تمایز افزایش یافته می‌گردد. این اختلافات به صورت معنی‌دار و در تمام مقایسه‌ها (P<0.05) در نظر گرفته شده است. داده‌ها به صورت میانگین ± انحراف معیار نشان داده شده‌اند.

پروتئین در هر بک از نمونه با توجه به نمودار استاندارد و نمونه‌های مجهول متغیرگرایی. فاصله پروتئین‌های OD به دست آمده در مرحله بعد برای آزمون وسترن بلات به کار رفت.

چهار روز پس از تمایز بیشترین افزایش فعالیت معادل 47/22 مشاهده گردید. به منظور تهیه نمونه‌های برای از نمونه‌های آزمایش و واکنش برادورد استفاده شد. همان‌طور که در نمودار 2 نشان داده شده است، غلظت پروتئین (میلی‌گرم).

نمودار 2. نمودار استاندارد واکنش برادورد جهت تعیین غلظت نمونه‌های پروتئین.
تیمار با پلیمیت

به منظور بررسی موثری بیان Zn α1 در سطح پروتئین در حضور و عدم حضور پلیمیت، سلسولهای عضلانی C2C12 تحت تیمار با پلیمیت 5/0 میلی‌مولار قرار گرفتند. همان‌طور که در شکل 2 نشان داده شده سلسولهای به

![نمودار]

زمان (ساعت) در حضور پلیمیت 5/0 میلی‌مولار

![بیانکین](34 کیلو‌التن)

![PGC-1α](93 کیلو‌التن)

(الف)

![نمودار]

زمان (ساعت) در حضور پلیمیت 5/0 میلی‌مولار

بر اساس یافته‌ها، به دست آمده بیان پروتئین

PGC-1α در حضور غلظت 5/0 میلی‌مولار پلیمیت پس از گذشت 6 و 12 ساعت نسبت به گروه‌های کنترل تغییر معنی‌داری نشان نمی‌دهد (P>0/05). اما در زمان‌های 18، 24 و 48 ساعت بیان

PGC-1α در زمان‌های مختلف به صورت خیلی اندکی می‌باشد که نشان داده شده است.

در تیمار با پلیمیت، بیان پروتئین PGC-1α به دست آمده می‌باشد. بیان PGC-1α در حضور غلظت 5/0 میلی‌مولار پلیمیت پس از گذشت 6 و 12 ساعت نسبت به گروه‌های کنترل تغییر معنی‌داری نشان نمی‌دهد (P>0/05). اما در زمان‌های 18، 24 و 48 ساعت بیان

PGC-1α در زمان‌های مختلف به صورت منفی اندکی می‌باشد که نشان داده شده است.

بر اساس یافته‌هایی که دست آمده بیان پروتئین PGC-1α در حضور غلظت 5/0 میلی‌مولار پلیمیت پس از گذشت 6 و 12 ساعت نسبت به گروه‌های کنترل تغییر معنی‌داری نشان نمی‌دهد (P>0/01). اما در زمان‌های 18، 24 و 48 ساعت بیان

PGC-1α در زمان‌های مختلف به صورت منفی اندکی می‌باشد که نشان داده شده است (P>0/01).
تیمار با RGZ و EGCG

همان طور که در شکل ۲ نشان داده شده، در سلول‌های مقام به انسولین تیمار شده با پالپیتات و انسولین و بدون اثر میزان بیان پروتئین PGC-1α نسبت به گروه- قرار گرفتن، میزان بیان پروتئین PGC-1α، (الف) (ب) (پدیده‌ای معنی‌داری نمی‌دهد (P=0/۵۱). حال اینکه تحت واردات تیمار با پالپیتات و انسولین و بدون اثر EGCG و RGZ دادن میزان بیان پروتئین PGC-1α نسبت به گروه-

شکل ۲- اثر میزان بیان پروتئین PGC-1α در سلول‌های C2C12 مقام به انسولین شده توسط EGCG و RGZ

پالپیتات. الگو سلول‌ها به مدت ۲۴ ساعت با پالپیتات تیمار شده و قبل از جمع‌آوری با انسولین انکروش گردیدند. از چهار به راست: کنترل، تیمار میوتیوب‌های C2C12 با انسولین بدون تیمار با پالپیتات، تیمار سلول‌های C2C12 با انسولین و پالپیتات، تیمار سلول‌های RGZ، تیمار سلول‌های C2C12 با انسولین، پالپیتات و EGCG، تیمار سلول‌های C2C12 با انسولین، پالپیتات و RGZ، تیمار سلول‌های C2C12 با انسولین، پالپیتات و RGZ، تیمار سلول‌های C2C12 با انسولین، پالپیتات و EGCG، تیمار سلول‌های C2C12 با انسولین، پالپیتات و RGZ، تیمار سلول‌های C2C12 با انسولین، پالپیتات و EGCG.
شده با انسولین را در سلول‌های عضلانی C2C12 تحت تاثیر انسولین و EGCG قرار گرفت.

به گونه‌ای که در حالت تیمار با انسولین و EGCG افزایش بی‌پدیدانی EGCG در سلول‌های عضلانی C2C12 اتفاق می‌افتد.

بحث

رژیم غذایی پرچرب، به‌تحرک و دریافت کالری اضافی

می‌تواند منجر به افزایش استرس‌های جنبه آزاد موجود در گرخ و نقص در سوخت و ساز اسیدهای جنبه آزاد

بعد از مطالعه‌هایی که در سلول‌های عضلانی C2C12 تحت تأثیر انسولین قرار گرفته بود که این موضوع با حاکمینی به شدت آسایش‌طلبی است.

یکی از داده‌های بازتابی از اثر دادن پلاکت‌های ریوکراکی در

می‌تواند در سلول‌های عضلانی C2C12 مهار می‌باشد.

مطالعات

کنکالکته‌های است بکارآمد آن را تغییر تیمار با EGCG و مکرونیولور میزان افزایش بی‌پدیدانی EGCG در سلول‌های عضلانی C2C12 می‌باشد.

مطالعات

کنکالکته‌های است بکارآمد آن را تغییر تیمار با EGCG و مکرونیولور میزان افزایش بی‌پدیدانی EGCG در سلول‌های عضلانی C2C12 می‌باشد.

مطالعات

کنکالکته‌های است بکارآمد آن را تغییر تیمار با EGCG و مکرونیولور میزان افزایش بی‌پدیدانی EGCG در سلول‌های عضلانی C2C12 می‌باشد.

مطالعات

کنکالکته‌های است بکارآمد آن را تغییر تیمار با EGCG و مکرونیولور میزان افزایش بی‌پدیدانی EGCG در سلول‌های عضلانی C2C12 می‌باشد.
References


In diabetes, the phosphorylation of PGC-1alpha leads to the activation of mitochondrial transcription factor A (MTF-1), which upregulates the expression of genes involved in mitochondrial biogenesis and oxidative phosphorylation. These genes include PGC-1alpha itself, which forms a complex with the transcription factor NRF1 to activate the expression of genes encoding mitochondrial proteins.

In obesity, the expression of PGC-1alpha and NRF1 is increased, leading to the activation of mitochondrial biogenesis and the upregulation of genes involved in cellular bioenergetics and oxidative phosphorylation. This results in the increased production of ATP and the increased capacity for oxidative metabolism, which helps to meet the increased energy demands of obesity.

In patients with type 2 diabetes, the expression of PGC-1alpha and NRF1 is upregulated, leading to the activation of mitochondrial biogenesis and the upregulation of genes involved in cellular bioenergetics and oxidative phosphorylation. This results in the increased production of ATP and the increased capacity for oxidative metabolism, which helps to meet the increased energy demands of diabetes.

In summary, the upregulation of PGC-1alpha and NRF1 in obesity and diabetes is a common mechanism that helps to meet the increased energy demands of these conditions. However, the extent of upregulation and the specific genes that are upregulated differ between obesity and diabetes, which may contribute to the different metabolic phenotypes of these conditions.


Original Article

Investigating the Effects of Rosiglitazone and Epigallocatechin-3-Gallate on PGC-1α protein expression in Palmitate-induced Insulin Resistant C2C12 skeletal Muscle Cells

Bakhtiyari S1, Babakhani A2, Haghani K1
1Department of Biochemistry, School of Medicine, & 2Student Research Committee, Ilam University of Medical Sciences, Ilam, I.R. Iran

e-mail: sobhe14@yahoo.com

Received: 27/09/2014 Accepted: 04/02/2015

Abstract
Introduction: Alterations in lipids metabolism are one of the important mechanisms for the treatment of insulin resistance and, hence for type 2 diabetes. On the other hand, PGC-1α, as a key regulator of mitochondrial biogenesis and function, by increasing β-oxidation of lipids plays an important role in improving insulin sensitivity. In the present study, the effects of Epigallocatechin-3-Gallate (EGCG), an anti-obesity and enhancer of lipid catabolism agent, on PGC-1α protein expression was examined and compared with the anti-diabetic drug Rosiglitazone (RGZ).

Materials and Methods: After differentiation of C2C12 myoblasts to myotubes, insulin resistance was induced by palmitate treatment. Afterward, PGC-1α protein expression was examined using the western blot method before and after treatment with insulin and after EGCG and RGZ treatment. Results: Palmitate treatment significantly decreased PGC-1α protein expression in the C2C12 cells (P=0.001). Treatment of these cells with EGCG had no significant effect on the PGC-1α protein expression (P=0.67), whereas treatment with RGZ significantly increased expression of this gene at protein level (P=0.003). In addition, this significant increase in PGC-1α protein expression was maintained by simultaneous treatment with EGCG and RGZ (P=0.001).

Conclusion: Our results showed that the effect of EGCG on PGC-1α protein expression was not significant, whereas RGZ significantly improved the palmitate-induced reduction of PGC-1α protein expression. Overall, it seems that anti-diabetic effect of EGCG is not exerted through its effect on the expression of PGC-1α gene, in contrast to that of RGZ.

Keywords: Insulin resistance, C2C12 muscle cells, PGC-1α gene, Rosiglitazone, Epigallocatechin-3-Gallate