این مکمل یاری با آرژینین و اورتینی بر شاخص‌های رشد در ماهی
Oncorhynchus mykiss، قزل آلا رنگین کمان،

نام مسئول: ن. رستم‌خانی
email: n.rostamkhani@gmail.com

مقدمه
مابین آن از مهم‌ترین مدل‌های آزمایشگاهی محسوب می‌شود. هر این‌که در بررسی تأثیر آن‌ها، از آزمایشگاه‌های اسید آمینه‌ای در غذا بر شاخص‌های رشد و سطح فاکتور رشد همبستگی (IGF) در خون ماهی قزل آلا رنگین‌کمان
(Oncorhynchus mykiss) در مورد عوارض للم قرار گرفته است. مادر و روغن‌ها: ماهیان با مایگین و ژن اولیه 0.46، به
مدت ۸۸ هفته با یکی از بیماران غذای رژیمی تغذیه شدند. تیمار یک، غذا اکسنت‌های تجاری ۲۸ ال آرژینین. تیمار دو، غذا اکسنت و ۲۸ ال آرژینین: تیمار سه، غذا اکسنت و ۲۸ ال آرژینین: تیمار چهار، غذا اکسنت و ۲۸ ال آرژینین و ۲۸ ال آرژینین و تیمار پنجم، غذا اکسنت بدون افزودن اسید آمینه (تیمار شاهد). پیشینه ها بر اساس تاریخ به مدت ۱۲۰ ماه، ماهیان تیمار سه دارای تیمار افزایش وزن (75% / 50% / 75%) مربوط به تیمار بود. در حالی که بچه‌های غذایی افزایش گذار در مقداری به طور معنی‌داری بالاتر از مقایسه معنی‌دار شاخص‌ها در تیمار شاهد بودند (P<0.05). در سپرده اسید آمینه های غذا اکسنت و ۲۸ ال آرژینین: تیمار افزایش وزن (75% / 50% / 75%) مربوط به تیمار بود. این مقایسه با طور معنی‌داری بالاتر از مقایسه معنی‌دار شاخص‌ها در تیمار شاهد بودند (P<0.05). در سپرده اسید آمینه

واژگان کلیدی: قزل آلا رنگین کمان، رشد، فاکتور رشد همبستگی (IGF-I)، مکمل یاری، آرژینین، اورتینی

دریافت مقاله: ۹۷/۳/۲۰، پذیرش مقاله: ۹۷/۴/۲۱
iii - Ornithine
iv - Oncorhynchus mykiss
v - Salmonidae

i - Gaylord
ii - Arginine
اضافه ترکیب 2% آل-آرژنین+1% آل-آرژنین، تیمار چهار:

تغذیه با غنای تجاری به اضافه ترکیب 2% آل-آرژنین+1% آل-آرژنین، تیمار چهار:

تغذیه با غنای تجاری بدون افزودن آسیابه‌های بیمار سه تکرار و

ترکیب ماهیان 50% ماهی در به‌طور جهشی با حجم

لیتر آب بو. غنای تجاری مورد استفاده محصول شرکت

فرآیندهای (نشر نمود)، دوباره و دوباره 26% پروتئین، 14% چربی و

حدود 20% کشور. اسیدهای آل-آرژنین و آل-

آرژنین مورد استفاده در این پژوهش به صورت پودر

کرسینیلا با بخش ۹۸% و ساخت شرکت آمریکا SIGMA

بودند. برای پیاده‌سازی آمینهای آمیزشی افزوده شده به همراه

و عدم شستشوی آنها در آب، هر میلی‌گرم ۳ گرم

ماهی زالیتی، ذرته سیم به‌ازای هر کیلوگرم غذای. به غنای

ماهی اضافه می‌شود. به منظور حذف احتیاط ماده

باید این کار تعداد 2 چهار ماهی از هر تیمار (دو قطعه ماهی

از هر تیمار) به صورت تصادفی صید و مورد استفاده قرار

گرفتند. ماهیان غذای ۶ ماهه می‌باشد. با دور ۲۳۰۰ تکرار

در ۷ دقیقه و در دو دهه سانتی‌گراد سانتی‌فریزر زنده.

پلاسما به ماهیان طول چالسترینگ سایاه‌پسی. از

استریل جمع‌آوری و تا زمان ماهی‌ها در فریزر

درجه سانتی‌گراد نگه‌داری شد. اندازه‌گیری مقدار ماهی

به‌وسیله روش روش‌الاپس و با استفاده از کیت

معنوسی اندازه‌گیری فاکتور رشد شبه اسپلین‌یک در

CUSBIO BIOTECH، کمپانی Synergy HT (شرکت

سپرای تکنولوژی مایزلیتر) و در طول موج ۵۵-۶۰ تومتر

نقطه ثابت‌تایم. محدودیت تشخیص کیت

پپتیدکریپ در مایزلیتر. حساسیت سنجش‌ها یا محدودیت

کمک‌الیافی (شرکت) (Inter and intra-assay Precision).

را از غلطی صفر تشخیص داد. پپتیدکریپ در مایزلیتر

یک نسبت آنزیم، مقداری تغییرات درون و بین

کمتر از ۱۵% مشاهده شد. نتایج و شاخص کیفی به استفاده از فرمول‌های زیر

پیام‌رسال:

بهرام: تغذیه جهشی و تحلیل آماری شاخص‌های رشد، پس

از اطلاع از نتایج بوده دیده زمان این استفاده از آزمون

کولموگروف - اسمیرنوف. مقایسه آن با استفاده از

Tukey's Test) آنالیز واریانس یک ضوابط و آزمون توکی

نرم‌افزار SPSS سنجش صورت گرفت. تحلیل آماری

-- Eugenia Caryophyllata
مقادیر هورمون‌I یعنی IGF-I به روش آنالیز واریانس چند متغیره (GLM) و مقایسه‌ی میانگین‌های به روش دانکن (Duncan) توسط نرم‌افزار (9.2) انجام شدند. ضرایب (Test) تغییرات بین نامه (Coefficient of variation: CV) استفاده از فرمول ضریب تغییرات = 100×(میانگین احراز میزان‌سازی) محسوب گردید. این در تهیه میانگین‌ها سطح معنی‌دار بود. نتایج شاخص هر روش در نظر گرفته شد.

جدول 1- میانگین ± انحراف از معیار و ضریب تغییرات مقادیر شاخص‌های رشد در تیمارهای مختلف

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>شاخص‌های رشد</th>
</tr>
</thead>
<tbody>
<tr>
<td>افزایش وزن (درصد)</td>
<td></td>
</tr>
<tr>
<td>3/1/9 ± 3/2/1</td>
<td></td>
</tr>
<tr>
<td>1/2/1 ± 3/1/2</td>
<td></td>
</tr>
<tr>
<td>2/1/2 ± 3/1/2</td>
<td></td>
</tr>
<tr>
<td>ضریب رشد ویژه (درصد در روز)</td>
<td></td>
</tr>
<tr>
<td>1/1/2 ± 3/1/2</td>
<td></td>
</tr>
<tr>
<td>شاخص کبدی (درصد)</td>
<td></td>
</tr>
<tr>
<td>1/2/1 ± 3/1/2</td>
<td></td>
</tr>
</tbody>
</table>

L-arginine

1. تیمار 1: دارای ۵۰ درصد افزایش در وزن نیش دوره‌ای بود.
2. تیمار ۲: دارای ۵۰ درصد افزایش در وزن نیش دوره‌ای بود.
3. تیمار ۳: دارای ۵۰ درصد افزایش در وزن نیش دوره‌ای بود.
4. تیمار ۴: دارای ۵۰ درصد افزایش در وزن نیش دوره‌ای بود.
5. تیمار ۵: دارای ۵۰ درصد افزایش در وزن نیش دوره‌ای بود.
6. تیمار ۶: دارای ۵۰ درصد افزایش در وزن نیش دوره‌ای بود.
7. تیمار ۷: دارای ۵۰ درصد افزایش در وزن نیش دوره‌ای بود.
8. تیمار ۸: دارای ۵۰ درصد افزایش در وزن نیش دوره‌ای بود.
9. تیمار ۹: دارای ۵۰ درصد افزایش در وزن نیش دوره‌ای بود.
10. تیمار ۱۰: دارای ۵۰ درصد افزایش در وزن نیش دوره‌ای بود.

بررسی هر دسته تعداد ۳۰ برای محاسبه یافته‌های وزن، ضریب رشد ویژه و تعداد 6 برای محاسبه شاخص کبدی.
تغییرات نرخ رشد ویژه ماهیان نشان داد که این نرخ از ابتدا تا انتهای دوره آزمایش در تمام تیمارها روند نزولی را طی نموده است (نمونه ۲/۰۰ و بیشترین 

(۵/۰۰/۲۳۲) نرخ رشد ویژه به ترتیب مربوط به تیمارهای

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نرخ رشد ویژه (در هر میلی‌لیتر)</th>
<th>زمان (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td></td>
<td>۷</td>
</tr>
<tr>
<td>۲</td>
<td></td>
<td>۱۲</td>
</tr>
<tr>
<td>۳</td>
<td></td>
<td>۲۸</td>
</tr>
<tr>
<td>۴</td>
<td></td>
<td>۶۰</td>
</tr>
</tbody>
</table>

نمودار ۲- تغییرات مقادیر نرخ رشد ویژه در تیمارهای مختلف، در طی دوره آزمایش

کنترين و بیشترین مقادیر شاخص گذشته (HSI (مربوط به تیمارهای شاهد و چهار و به ترتیب ۱/۰۴/۲ و ۱/۰۴/۲/۰/۴) بیشتر در HSI ماهیان در ابتدا تا اواست دوره آزمایش روتوی افزایش و در انتهای دوره روتوی کاهشی داشت. همچنین، مقادیر شاخص گذشته در تیمارهای ۲ و ۳ در سراسر دوره به طور مشخصی بیشتر از تیمارهای دیگر بودند (نمونه ۲/۰۰). بیشترین مقادیر این شاخص در انتهای دوره آزمایش، در تیمار چهار به ترتیب مستی. مقادیر شاخص گذشته در همه تیمارها گریه شده تا آمار میانگین دارای داشتند.

ضرایب تغییرات شاخص‌های رشد در تیمارهای مختلف در جدول ۱ ارائه شد. کمیت و دما بیشتر در مقادیر افزایش وژن ماهیان به ترتیب مربوط به تیمارهای شاهد (۱/۰۴/۲/۰۰) و کمیت و دما بیشتر در مقادیر ضریب رشد ویژه به ترتیب مربوط به تیمارهای شاهد (۱/۰۴/۲/۰۰) و کمیت و بیشترین مقادیر ضریب تغییرات در شاخص گذشته به ترتیب در تیمارهای ۴/۵/۲۰/۵ (کنترين و بیشترین تغییرات در شاخص گذشته به ترتیب در تیمارهای ۴/۵/۲۰/۵).
نمودار ۳- تغییرات مقادیر شاخص کبدی در تیمارهای مختلف در طی دوره آزمایش

نمودار ۴- مقایسه مقدار هورمون IGF-I در هر یک از تیمارها در طی دوره آزمایش
نمودار 5- مقایسه مقادیر هورمون-1 IGF-1 در تیمارهای مختلف، در مقاطع زمانی دو روز آزمایش. در هر تیمار، تیمارهای مهیّشین بین تیمار ۲ و ۱ با تیمار ۲ و شاهد تفاوت آماری معناداری مشاهده نشد. در انتهای هفته دوم بین تیمار ۲ و شاهد تفاوت آماری معناداری مشاهده نشد (P>0/0). P

در انتهای هفته ششم بیشترین میزان ۱ IGF-1 در تیمار ۲ به میزان ۲/۱ پیکوکرغم بر میلیلتر مشاهده شد، بین تیمار ۲ با تیمار ۱ و ۳ تفاوت آماری معناداری مشاهده نشد. اما بین تیمار ۲ با تیمار ۴ و شاهد تفاوت آماری معناداری مشاهده گردید (P<0/5).

بحث

به نظر می‌رسد در میان تمام مهره‌داران، ماهیان از نظر الگوی و فرایندهای مربوط به رشد، ویژگی‌های مخصوص به فردي را دارا می‌باشند. به طوری‌که به استثنای آنهاکه از گونه‌ها. ماهیها تابی به رشد نامحدود دارند. این به آن معنی است که اندازه آنها هرگز ثابت نمی‌باشند و رشد و رشد می‌باشد. به کنار ماهی‌های دیگر، ماهیان از نظر الگوی و فرایندهای مربوط به رشد، ویژگی‌های مخصوص به فردي را دارا می‌باشند. به طوری‌که به استثنای آنهاکه از گونه‌ها. ماهیها تابی به رشد نامحدود دارند. این به آن معنی است که اندازه آنها هرگز ثابت نمی‌باشند و رشد و رشد می‌باشد. به کنار ماهی‌های دیگر، ماهیان از نظر الگوی و فرایندهای مربوط به رشد، ویژگی‌های مخصوص به فردي را دارا می‌باشند. به طوری‌که به استثنای آنهاکه از گونه‌ها. ماهیها تابی به رشد نامحدود دارند. این به آن معنی است که اندازه آنها هرگز ثابت نمی‌باشند و رشد و رشد می‌باشد. به کنار ماهی‌های دیگر، ماهیان از نظر الگوی و فرایندهای مربوط به رشد، ویژگی‌های مخصوص به فردي را دارا می‌باشند. به طوری‌که به استثنای آنهاکه از گونه‌ها. ماهیها تابی به رشد نامحدود دارند. این به آن معنی است که اندازه آنها هرگز ثابت نمی‌باشند و رشد و رشد می‌باشد. به کنار ماهی‌های دیگر، ماهیان از نظر الگوی و فرایندهای مربوط به رشد، ویژگی‌های مخصوص به فردي را دارا می‌باشند. به طوری‌که به استثنای آنهاکه از گونه‌ها. ماهیها تابی به رشد نامحدود دارند. این به آن معنی است که اندازه آنها هرگز ثابت نمی‌باشند و رشد و رشد می‌باشد. به کنار ماهی‌های دیگر، ماهیان از نظر الگوی و فرایندهای مربوط به رشد، ویژگی‌های مخصوص به فردي را دارا می‌باشند. به طوری‌که به استثنای آنهاکه از گونه‌ها. ماهیها تابی به رشد نامحدود دارند. این به آن معنی است که اندازه آنها هرگز ثابت نمی‌باشند و رشد و رشد می‌باشد. به کنار ماهی‌های دیگر، ماهیان از نظر الگوی و فرایندهای مربوط به رشد، ویژگی‌های مخصوص به فردي را دارا می‌باشند. به طوری‌که به استثنای آنهاکه از گونه‌ها. ماهیها تابی به رشد نامحدود دارند. این به آن معنی است که اندازه آنها هرگز ثابت نمی‌باشند و رشد و رشد می‌باشد. به کنار ماهی‌های دیگر، ماهیان از نظر الگوی و فرایندهای مربوط به رشد، ویژگی‌های مخصوص به فردي را دارا می‌باشند. به طوری‌که به استثنای آنهاکه از گونه‌ها. ماهیها تابی به رشد نامحدود دارند. این به آن معنی است که اندازه آنها هرگز ثابت نمی‌باشند و رشد و رشد می‌باشد. به کنار ماهی‌های دیگر، ماهیان از نظر الگوی و فرایندهای مربوط به رشد، ویژگی‌های مخصوص به فردي را دارا می‌باشند. به طوری‌که به استثنای آنهاکه از گونه‌ها. ماهیها تابی به رشد نامحدود دارند. این به آن معنی است که اندازه آنها هرگز ثابت نمی‌باشند و رشد و رشد می‌باشد. به کنار ماهی‌های دیگر، ماهیان از نظر الگوی و فرایندهای مربوط به رشد، ویژگی‌های مخصوص به فردي R

* Wilkinson
شب انسولین در خون وجود دارد. ۳۰ در این مطالعه نیز، چنین ارتباطی در برخی از تیمارها و همزمان با افزایش سطوح IGF-1 در پلاسمای خون ماهی تردیدی می‌کند.

مشخصات انسولین در گزارش‌های مختلف آزمایشگاهی، این ماهیان (Acipenser transmontanus) (Acipenser transmontanus) (Acipenser transmontanus) (Acipenser transmontanus)

مسیرهای اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش سطوح IGF-1 در پلاسمای خون ماهی تردیدی باشد.

مشخصات اندوتروین کنترل کننده نرخ در فیبر تروپ، در نهایت، می‌تواند به کاهش S}
مطالعه رپ و روابط سازوارکاری فیزیولوژی می‌تواند برای تعیین نیازهای جایی در موج‌های مختلف می‌باشد.
برای فورمولاگاس، مناسب غذا باید شناخت کافی از
فیزیولوژی غذایی وجود دست آور. چنین غذاها باید
تامین کننده متقابل کافی و نسبت‌های معنایی از
تغذیه‌های ضروری و مواد افزودنی باشند. ماهیان باید
می‌توانند به غذای ماهی‌ها آزادانه‌بندی برای
تدوین داشته باشند. برای ترکیب
داده‌های مربوط به درک پیداهای فیزیولوژی در ماهیان
مور استفاده قرار گیرد. زیرا بسیاری از سالندار
زنبیلی و ماهی‌های آزادانه‌بندی در آنها
محیط‌های نسل‌های مختلف، نسبت به ماهیان کوچک
تار دارد و اکم‌بردار و تهیهٔ مقدار بشری از آنها
با سرعتی که برای انجام آن‌ها به پیشنهاد
شناخته و زنبیلی پی‌کوئی و وجود دارد.1 این اتفاق
شایع در ماهیان باید به دلیل
ظرفیت همزمانی با اطلاعات موقعیتی در این ماهیان
که در آنها نشان می‌دهد. ماهیان به گیرنده
علومی غذاییی از سازوارکاری فیزیولوژی
دنبال به انجام از آنها راه دارد. به این
تغذیه‌های ضروری، مواد افزودنی، و
شناخته IGF و GH می‌سری‌سازی
در سازوارکاری F۱ که در برابر
یک گردشی به هورمون GH F۱
به طور غیر مستقیم به میانی
به طور غیر مستقیم به میانی
GH F۱...
References


A Study on the Effects of Supplementary L-arginine and L-ornithine on the Growth Indices in Rainbow Trout, Oncorhynchus Mykiss

Rostamkhani N1, Malekzadeh-Viayeh R2

1Department of Biology, Faculty of Sciences, & 2Artemia and Aquatic Research Institute, Urmia University, Urmia, I.R. Iran

e-mail: n.rostamkhani@gmail.com

Received: 01/03/2014 Accepted: 12/08/2014

Abstract

Introduction: Fish are useful models for physiological studies in which using nutritional, growth and hormonal indices can lead to the understanding of several biological mechanisms in vertebrates. In this study, the effects of the addition of two amino acids, L-arginine and L-ornithine, to a commercial feed on the growth indices and the blood levels of insulin-like growth factor-I (IGF-I) of rainbow trout, Oncorhynchus mykiss were examined. Materials and Methods: The fish (average initial weight 45±4 g) were fed for 8 weeks with one of the following 4 dietary treatments: Commercial trout diet supplemented with 2% L-arginine-(T1), 2% L-ornithine-(T2), 2% L-arginine + 1% L-ornithine-(T3), 3% L-arginine + 1% L-ornithine-(T4) and the commercial feed without addition of the amino acids (controls). Results: According to the results, maximum weight gain (268.94±5.84%) and specific growth rate (SGR) (2.33±0.05% day−1) were observed in the fish of group T3, while maximum hepatosomatic index (HSI) (1.49±0.04%) was recorded in group T4. These amounts were significantly higher than their counterpart indices of the control group (P<0.05). Supplementing the feed with the amino acids, overall, increased IGF-I levels throughout the study period. At the end of the eighth week, in the T3 and control groups maximum and minimum IGF levels were 1180 pg/ml and 980.35 pg/ml respectively. Conclusions: Results of this study showed the positive effects of providing fish diet with additional amino acids, especially a combination of arginine and ornithine, on growth promotion in rainbow trout.

Keywords: Oncorhynchus mykiss, Growth, Insulin-like growth factor-I (IGF-I), Amino acid supplementation, L-arginine, L-ornithine